Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 132869 by syamilkamil1 last updated on 17/Feb/21

Commented by syamilkamil1 last updated on 17/Feb/21

what is the radius of the circle , if length the square 2 centimetres?

$${what}\:{is}\:{the}\:{radius}\:{of}\:{the}\:{circle}\:,\:{if}\:{length}\:{the}\:{square}\:\mathrm{2}\:{centimetres}? \\ $$

Commented by bramlexs22 last updated on 17/Feb/21

r = (1/4)a ((√3)−1)

$$\mathrm{r}\:=\:\frac{\mathrm{1}}{\mathrm{4}}{a}\:\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)\: \\ $$

Answered by mr W last updated on 17/Feb/21

Commented by mr W last updated on 17/Feb/21

(p/r)=(r/q)  ⇒q=(r^2 /p)  ((r+p)/(r+q))=((r+q)/(3r+q))  ((r+p)/(r+(r^2 /p)))=((r+(r^2 /p))/(3r+(r^2 /p)))  3p^2 =r^2   ⇒p=(r/( (√3)))  ⇒q=(√3)r  s=(√((r+p)^2 +(r+q)^2 ))  =r(√((1+(1/( (√3))))^2 +(1+(√3))^2 ))=((2(√(6((√3)+2))))/3)r  a=p+q+s=((1/( (√3)))+(√3)+((2(√(6((√3)+2))))/3))r  a=(2/( (√3)))(2+(√(2((√3)+2))))r=2((√3)+1)r  ⇒r=(a/(2((√3)+1)))=((((√3)−1)a)/4)

$$\frac{{p}}{{r}}=\frac{{r}}{{q}} \\ $$$$\Rightarrow{q}=\frac{{r}^{\mathrm{2}} }{{p}} \\ $$$$\frac{{r}+{p}}{{r}+{q}}=\frac{{r}+{q}}{\mathrm{3}{r}+{q}} \\ $$$$\frac{{r}+{p}}{{r}+\frac{{r}^{\mathrm{2}} }{{p}}}=\frac{{r}+\frac{{r}^{\mathrm{2}} }{{p}}}{\mathrm{3}{r}+\frac{{r}^{\mathrm{2}} }{{p}}} \\ $$$$\mathrm{3}{p}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow{p}=\frac{{r}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{q}=\sqrt{\mathrm{3}}{r} \\ $$$${s}=\sqrt{\left({r}+{p}\right)^{\mathrm{2}} +\left({r}+{q}\right)^{\mathrm{2}} } \\ $$$$={r}\sqrt{\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\mathrm{2}\sqrt{\mathrm{6}\left(\sqrt{\mathrm{3}}+\mathrm{2}\right)}}{\mathrm{3}}{r} \\ $$$${a}={p}+{q}+{s}=\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+\sqrt{\mathrm{3}}+\frac{\mathrm{2}\sqrt{\mathrm{6}\left(\sqrt{\mathrm{3}}+\mathrm{2}\right)}}{\mathrm{3}}\right){r} \\ $$$${a}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left(\mathrm{2}+\sqrt{\mathrm{2}\left(\sqrt{\mathrm{3}}+\mathrm{2}\right)}\right){r}=\mathrm{2}\left(\sqrt{\mathrm{3}}+\mathrm{1}\right){r} \\ $$$$\Rightarrow{r}=\frac{{a}}{\mathrm{2}\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)}=\frac{\left(\sqrt{\mathrm{3}}−\mathrm{1}\right){a}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com