Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 132594 by Study last updated on 15/Feb/21

Commented by mr W last updated on 15/Feb/21

the sum of two complex numbers  can be a real number, e.g.   (1+i)+(1−i)=2  the product of two complex numbers  can also be a real number, e.g.   (1+i)(1−i)=2

$${the}\:{sum}\:{of}\:{two}\:{complex}\:{numbers} \\ $$$${can}\:{be}\:{a}\:{real}\:{number},\:{e}.{g}.\: \\ $$$$\left(\mathrm{1}+{i}\right)+\left(\mathrm{1}−{i}\right)=\mathrm{2} \\ $$$${the}\:{product}\:{of}\:{two}\:{complex}\:{numbers} \\ $$$${can}\:{also}\:{be}\:{a}\:{real}\:{number},\:{e}.{g}.\: \\ $$$$\left(\mathrm{1}+{i}\right)\left(\mathrm{1}−{i}\right)=\mathrm{2} \\ $$

Answered by liberty last updated on 15/Feb/21

2x^2 +6x+5=0 , x∈C   x^2 +3x+(5/2)=0   (x+(3/2))^2 −(9/4)+((10)/4)=0  (x+(3/2))^2 =−(1/4)  x+(3/2)= ±(1/2)i  → { ((x_1 =−(3/2)+(1/2)i)),((x_2 =−(3/2)−(1/2)i)) :}   → { ((x_1 +x_2 = −3)),((x_1 .x_2 =(−(3/2)+(1/2)i)(−(3/2)−(1/2)i)=(5/2))) :}

$$\mathrm{2x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{5}=\mathrm{0}\:,\:\mathrm{x}\in\mathbb{C} \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\frac{\mathrm{5}}{\mathrm{2}}=\mathrm{0} \\ $$$$\:\left(\mathrm{x}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{9}}{\mathrm{4}}+\frac{\mathrm{10}}{\mathrm{4}}=\mathrm{0} \\ $$$$\left(\mathrm{x}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{x}+\frac{\mathrm{3}}{\mathrm{2}}=\:\pm\frac{\mathrm{1}}{\mathrm{2}}{i} \\ $$$$\rightarrow\begin{cases}{\mathrm{x}_{\mathrm{1}} =−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{i}}\\{\mathrm{x}_{\mathrm{2}} =−\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{i}}\end{cases} \\ $$$$\:\rightarrow\begin{cases}{\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} =\:−\mathrm{3}}\\{\mathrm{x}_{\mathrm{1}} .\mathrm{x}_{\mathrm{2}} =\left(−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{i}\right)\left(−\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{i}\right)=\frac{\mathrm{5}}{\mathrm{2}}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com