Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 132515 by mohammad17 last updated on 14/Feb/21

Commented by mohammad17 last updated on 14/Feb/21

help me sir

$${help}\:{me}\:{sir} \\ $$

Answered by EDWIN88 last updated on 14/Feb/21

Q1. ∫_0 ^∞ c.e^(−2x)  dx = 1    −(1/2)c.e^(−2x)  ]_0 ^∞  = 1    (1/2)c = 1 ⇒ c = 2

$$\mathrm{Q1}.\:\int_{\mathrm{0}} ^{\infty} \mathrm{c}.\mathrm{e}^{−\mathrm{2x}} \:\mathrm{dx}\:=\:\mathrm{1}\: \\ $$$$\left.\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{c}.\mathrm{e}^{−\mathrm{2x}} \:\right]_{\mathrm{0}} ^{\infty} \:=\:\mathrm{1}\: \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{c}\:=\:\mathrm{1}\:\Rightarrow\:\mathrm{c}\:=\:\mathrm{2}\: \\ $$

Answered by EDWIN88 last updated on 14/Feb/21

Q1C.   A and B disjoint even ⇒P(A∩B)= 0  n(B∩A^c ) = n(B)   ((n(B∩A^c ))/(n(S))) = ((n(B))/(n(S))) ⇒P(B∩A^c ) = P(B)=(1/3)

$$\mathrm{Q1C}.\: \\ $$$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{disjoint}\:\mathrm{even}\:\Rightarrow\mathrm{P}\left(\mathrm{A}\cap\mathrm{B}\right)=\:\mathrm{0} \\ $$$$\mathrm{n}\left(\mathrm{B}\cap\mathrm{A}^{\mathrm{c}} \right)\:=\:\mathrm{n}\left(\mathrm{B}\right) \\ $$$$\:\frac{\mathrm{n}\left(\mathrm{B}\cap\mathrm{A}^{\mathrm{c}} \right)}{\mathrm{n}\left(\mathrm{S}\right)}\:=\:\frac{\mathrm{n}\left(\mathrm{B}\right)}{\mathrm{n}\left(\mathrm{S}\right)}\:\Rightarrow\mathrm{P}\left(\mathrm{B}\cap\mathrm{A}^{\mathrm{c}} \right)\:=\:\mathrm{P}\left(\mathrm{B}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Answered by guyyy last updated on 15/Feb/21

Commented by guyyy last updated on 15/Feb/21

Commented by mohammad17 last updated on 16/Feb/21

sir can you help me in this question pls  prove that Log(z_1 z_2 )=Log(z_1 )+Log(z_2 )  with condition(−π<Argz_1 +Argz_2 <π)

$${sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:{this}\:{question}\:{pls} \\ $$$${prove}\:{that}\:{Log}\left({z}_{\mathrm{1}} {z}_{\mathrm{2}} \right)={Log}\left({z}_{\mathrm{1}} \right)+{Log}\left({z}_{\mathrm{2}} \right) \\ $$$${with}\:{condition}\left(−\pi<{Argz}_{\mathrm{1}} +{Argz}_{\mathrm{2}} <\pi\right) \\ $$

Commented by guyyy last updated on 19/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com