Question Number 132098 by rs4089 last updated on 11/Feb/21 | ||
Answered by Ar Brandon last updated on 11/Feb/21 | ||
$$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{kn}+\mathrm{k}^{\mathrm{2}} } \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}S}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}+\frac{\mathrm{k}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left(\frac{\pi}{\mathrm{3}}−\frac{\pi}{\mathrm{6}}\right)=\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$ | ||
Commented by Ar Brandon last updated on 11/Feb/21 | ||
$$\mathrm{For}\:\mathrm{n}=\mathrm{1} \\ $$$$\mathrm{S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}}<\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\mathrm{T}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}}>\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$ | ||