Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131745 by liberty last updated on 08/Feb/21

Commented by guyyy last updated on 18/Feb/21

Commented by guyyy last updated on 18/Feb/21

Commented by guyyy last updated on 18/Feb/21

Commented by guyyy last updated on 18/Feb/21

Answered by bemath last updated on 08/Feb/21

(2) lim_(n→∞) [(1+(1/n^2 ))^n^2  ]^((4(sin (π/(2n))))/(π/(2n))) = e^(lim_(n→∞) (((4sin (π/(2n)))/(π/(2n)))))  = e^4

$$\left(\mathrm{2}\right)\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)^{\mathrm{n}^{\mathrm{2}} } \right]^{\frac{\mathrm{4}\left(\mathrm{sin}\:\frac{\pi}{\mathrm{2n}}\right)}{\frac{\pi}{\mathrm{2n}}}} =\:\mathrm{e}^{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{4sin}\:\frac{\pi}{\mathrm{2n}}}{\frac{\pi}{\mathrm{2n}}}\right)} \:=\:\mathrm{e}^{\mathrm{4}} \\ $$

Answered by bemath last updated on 08/Feb/21

(1) since 5x^2 −18 is a quadratic polynomial  and P(x)+P(2x)=5x^2 −18 it follows that P(x)  must be a quadratic polynomial.   let P(x)=ax^2 +bx+c         P(2x)=4ax^2 +2bx+c   ⇒5ax^2 +3bx+2c ≡ 5x^2 −18 → { ((a=1 ,b=0)),((c=−9)) :}   lim_(x→3) (((P(x))/(x−3)))= lim_(x→3) (((x^2 −9)/(x−3)))=6

$$\left(\mathrm{1}\right)\:\mathrm{since}\:\mathrm{5x}^{\mathrm{2}} −\mathrm{18}\:\mathrm{is}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{polynomial} \\ $$$$\mathrm{and}\:\mathrm{P}\left(\mathrm{x}\right)+\mathrm{P}\left(\mathrm{2x}\right)=\mathrm{5x}^{\mathrm{2}} −\mathrm{18}\:\mathrm{it}\:\mathrm{follows}\:\mathrm{that}\:\mathrm{P}\left(\mathrm{x}\right) \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{polynomial}.\: \\ $$$$\mathrm{let}\:\mathrm{P}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\: \\ $$$$\:\:\:\:\:\:\mathrm{P}\left(\mathrm{2x}\right)=\mathrm{4ax}^{\mathrm{2}} +\mathrm{2bx}+\mathrm{c}\: \\ $$$$\Rightarrow\mathrm{5ax}^{\mathrm{2}} +\mathrm{3bx}+\mathrm{2c}\:\equiv\:\mathrm{5x}^{\mathrm{2}} −\mathrm{18}\:\rightarrow\begin{cases}{\mathrm{a}=\mathrm{1}\:,\mathrm{b}=\mathrm{0}}\\{\mathrm{c}=−\mathrm{9}}\end{cases} \\ $$$$\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\left(\frac{\mathrm{P}\left(\mathrm{x}\right)}{\mathrm{x}−\mathrm{3}}\right)=\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\left(\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{9}}{\mathrm{x}−\mathrm{3}}\right)=\mathrm{6} \\ $$

Answered by bemath last updated on 08/Feb/21

(3) let α=sin^(−1) (√(7/8)) then    lim_(x→α)   ((tan^2 x−7)/(8sin^2 x−7(sin^2 x+cos^2 x))) =    lim_(x→α)  ((tan^2 x−7)/(sin^2 x−7cos^2 x)) = lim_(x→α)  (1/(cos^2 x)) = (1/(cos^2 α))   = 8

$$\left(\mathrm{3}\right)\:\mathrm{let}\:\alpha=\mathrm{sin}^{−\mathrm{1}} \sqrt{\frac{\mathrm{7}}{\mathrm{8}}}\:\mathrm{then}\: \\ $$$$\:\underset{{x}\rightarrow\alpha} {\mathrm{lim}}\:\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{7}}{\mathrm{8sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{7}\left(\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\right)}\:=\: \\ $$$$\:\underset{{x}\rightarrow\alpha} {\mathrm{lim}}\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{7}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{7cos}\:^{\mathrm{2}} \mathrm{x}}\:=\:\underset{{x}\rightarrow\alpha} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:=\:\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \alpha} \\ $$$$\:=\:\mathrm{8}\: \\ $$$$ \\ $$

Commented by guyyy last updated on 13/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com