Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131665 by naka3546 last updated on 07/Feb/21

Answered by mr W last updated on 07/Feb/21

Commented by mr W last updated on 07/Feb/21

((20^2 +22^2 −((√2)s)^2 )/(2×20×22))=((30^2 +26^2 −(2a)^2 )/(2×30×26))  ⇒((442−s^2 )/(22))=((788−2a^2 )/(39))   ...(i)  cos α=((a^2 +s^2 −10^2 )/(2as))  cos β=((a^2 +s^2 −4^2 )/(2as))=sin α  (((a^2 +s^2 −100)/(2as)))^2 +(((a^2 +s^2 −16)/(2as)))^2 =1  (a^2 +s^2 −100)^2 +(a^2 +s^2 −16)^2 =4a^2 s^2   a^4 +s^4 −116(a^2 +s^2 )+5128=0   ...(ii)  from (i):  a^2 =((39(s^2 −442))/(44))+394=((39s^2 )/(44))+((49)/(22))  put this into (ii):  (((39s^2 )/(44))+((49)/(22)))^2 +s^4 −116(((39s^2 )/(44))+((49)/(22))+s^2 )+5128=0  ((3457)/4)s^4 −103997s^2 +2359305=0  S=s^2 =2(((103997±51568)/(3457)))=90 or 30((1148)/(3457))

$$\frac{\mathrm{20}^{\mathrm{2}} +\mathrm{22}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}{s}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{20}×\mathrm{22}}=\frac{\mathrm{30}^{\mathrm{2}} +\mathrm{26}^{\mathrm{2}} −\left(\mathrm{2}{a}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{30}×\mathrm{26}} \\ $$$$\Rightarrow\frac{\mathrm{442}−{s}^{\mathrm{2}} }{\mathrm{22}}=\frac{\mathrm{788}−\mathrm{2}{a}^{\mathrm{2}} }{\mathrm{39}}\:\:\:...\left({i}\right) \\ $$$$\mathrm{cos}\:\alpha=\frac{{a}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} }{\mathrm{2}{as}} \\ $$$$\mathrm{cos}\:\beta=\frac{{a}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} }{\mathrm{2}{as}}=\mathrm{sin}\:\alpha \\ $$$$\left(\frac{{a}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{100}}{\mathrm{2}{as}}\right)^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{16}}{\mathrm{2}{as}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\left({a}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{100}\right)^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{16}\right)^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} {s}^{\mathrm{2}} \\ $$$${a}^{\mathrm{4}} +{s}^{\mathrm{4}} −\mathrm{116}\left({a}^{\mathrm{2}} +{s}^{\mathrm{2}} \right)+\mathrm{5128}=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$${from}\:\left({i}\right): \\ $$$${a}^{\mathrm{2}} =\frac{\mathrm{39}\left({s}^{\mathrm{2}} −\mathrm{442}\right)}{\mathrm{44}}+\mathrm{394}=\frac{\mathrm{39}{s}^{\mathrm{2}} }{\mathrm{44}}+\frac{\mathrm{49}}{\mathrm{22}} \\ $$$${put}\:{this}\:{into}\:\left({ii}\right): \\ $$$$\left(\frac{\mathrm{39}{s}^{\mathrm{2}} }{\mathrm{44}}+\frac{\mathrm{49}}{\mathrm{22}}\right)^{\mathrm{2}} +{s}^{\mathrm{4}} −\mathrm{116}\left(\frac{\mathrm{39}{s}^{\mathrm{2}} }{\mathrm{44}}+\frac{\mathrm{49}}{\mathrm{22}}+{s}^{\mathrm{2}} \right)+\mathrm{5128}=\mathrm{0} \\ $$$$\frac{\mathrm{3457}}{\mathrm{4}}{s}^{\mathrm{4}} −\mathrm{103997}{s}^{\mathrm{2}} +\mathrm{2359305}=\mathrm{0} \\ $$$${S}={s}^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{103997}\pm\mathrm{51568}}{\mathrm{3457}}\right)=\mathrm{90}\:{or}\:\mathrm{30}\frac{\mathrm{1148}}{\mathrm{3457}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com