Question Number 131309 by shaker last updated on 03/Feb/21 | ||
Answered by Ar Brandon last updated on 03/Feb/21 | ||
$$\mathrm{z}^{\mathrm{5}} +\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{i}=\mathrm{0}\:\Rightarrow\mathrm{z}^{\mathrm{5}} +\mathrm{e}^{\frac{\pi}{\mathrm{4}}\mathrm{i}} =\mathrm{0} \\ $$$$\mathrm{z}^{\mathrm{5}} =−\mathrm{e}^{\frac{\pi}{\mathrm{4}}\mathrm{i}} =\mathrm{e}^{\frac{\pi}{\mathrm{4}}\mathrm{i}+\left(\mathrm{2k}+\mathrm{1}\right)\pi\mathrm{i}} =\mathrm{e}^{\frac{\mathrm{8k}+\mathrm{5}}{\mathrm{4}}\pi\mathrm{i}} \\ $$$$\mathrm{z}=\mathrm{e}^{\frac{\mathrm{8k}+\mathrm{5}}{\mathrm{20}}\pi\mathrm{i}} ,\:\mathrm{k}\in\left[\mathrm{0},\:\mathrm{4}\right] \\ $$ | ||
Answered by mathmax by abdo last updated on 03/Feb/21 | ||
$$\mathrm{z}^{\mathrm{5}} \:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{i}}{\:\sqrt{\mathrm{2}}}=\mathrm{0}\:\Rightarrow\mathrm{z}^{\mathrm{5}} \:=−\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \:=\mathrm{e}^{\mathrm{i}\pi} .\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \:=\mathrm{e}^{\mathrm{i}\left(\pi+\frac{\pi}{\mathrm{4}}\right)\:} =\mathrm{e}^{\mathrm{i}\frac{\mathrm{5}\pi}{\mathrm{4}}} \:=\mathrm{e}^{\mathrm{i}\left(\frac{\mathrm{5}\pi}{\mathrm{4}}+\mathrm{2k}\pi\right)} \:\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{z}_{\mathrm{k}} =\mathrm{e}^{\frac{\mathrm{i}\left(\frac{\mathrm{5}\pi}{\mathrm{4}}+\mathrm{2k}\pi\right)}{\mathrm{5}\:}} =\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}\:+\mathrm{i}\frac{\mathrm{2k}\pi}{\mathrm{5}}} \:\:\mathrm{with}\:\mathrm{k}\in\left[\left[\mathrm{0},\mathrm{4}\right]\right] \\ $$ | ||