Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131305 by Algoritm last updated on 03/Feb/21

Answered by EDWIN88 last updated on 03/Feb/21

(8) lim_(x→0)  ((cos x−cos (3x))/(ln (1+x^2 ))) =          lim_(x→0)  (((1−(x^2 /2))−(1−((9x^2 )/2)))/x^2 ) = 4

$$\left(\mathrm{8}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}−\mathrm{cos}\:\left(\mathrm{3}{x}\right)}{\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:=\: \\ $$$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)−\left(\mathrm{1}−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\right)}{{x}^{\mathrm{2}} }\:=\:\mathrm{4}\: \\ $$

Answered by EDWIN88 last updated on 03/Feb/21

 (6) f ′(1) = lim_(x→0)  ((f(1+x)−f(1))/x)       f ′(1)= lim_(x→0)  (((√(x+4))−(√4))/x)     f ′(1) = lim_(x→0)  [ (x/(x [(√(x+4)) +(√4) ])) ]                 = (1/4)

$$\:\left(\mathrm{6}\right)\:{f}\:'\left(\mathrm{1}\right)\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left(\mathrm{1}+{x}\right)−{f}\left(\mathrm{1}\right)}{{x}} \\ $$$$\:\:\:\:\:{f}\:'\left(\mathrm{1}\right)=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{4}}−\sqrt{\mathrm{4}}}{{x}} \\ $$$$\:\:\:{f}\:'\left(\mathrm{1}\right)\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\frac{{x}}{{x}\:\left[\sqrt{{x}+\mathrm{4}}\:+\sqrt{\mathrm{4}}\:\right]}\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$

Answered by EDWIN88 last updated on 03/Feb/21

(10) ∫_0 ^( 4)  ((x^3  dx)/( (√(x^2 +2))))    let x^2 +2 = p^2  ⇒x dx = p dp → determinant (((x=4→p=3(√2))),((x=0→p=(√2))))  E = ∫_(√2) ^( 3(√2)) (((p^2 −2) p dp)/p)  E= [(1/3)p^3 −2p ]_(√2) ^(3(√2)) = ((1/3)p [ p^2 −6 ])_(√2) ^(3(√2))   E= (1/3){ 3(√2) . 12−(√2) .(−4) }  E = (1/3).40(√2) = ((40(√2))/3)

$$\left(\mathrm{10}\right)\:\int_{\mathrm{0}} ^{\:\mathrm{4}} \:\frac{{x}^{\mathrm{3}} \:{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\: \\ $$$$\:{let}\:{x}^{\mathrm{2}} +\mathrm{2}\:=\:{p}^{\mathrm{2}} \:\Rightarrow{x}\:{dx}\:=\:{p}\:{dp}\:\rightarrow\begin{array}{|c|c|}{{x}=\mathrm{4}\rightarrow{p}=\mathrm{3}\sqrt{\mathrm{2}}}\\{{x}=\mathrm{0}\rightarrow{p}=\sqrt{\mathrm{2}}}\\\hline\end{array} \\ $$$${E}\:=\:\int_{\sqrt{\mathrm{2}}} ^{\:\mathrm{3}\sqrt{\mathrm{2}}} \frac{\left({p}^{\mathrm{2}} −\mathrm{2}\right)\:{p}\:{dp}}{{p}} \\ $$$${E}=\:\left[\frac{\mathrm{1}}{\mathrm{3}}{p}^{\mathrm{3}} −\mathrm{2}{p}\:\right]_{\sqrt{\mathrm{2}}} ^{\mathrm{3}\sqrt{\mathrm{2}}} =\:\left(\frac{\mathrm{1}}{\mathrm{3}}{p}\:\left[\:{p}^{\mathrm{2}} −\mathrm{6}\:\right]\right)_{\sqrt{\mathrm{2}}} ^{\mathrm{3}\sqrt{\mathrm{2}}} \\ $$$${E}=\:\frac{\mathrm{1}}{\mathrm{3}}\left\{\:\mathrm{3}\sqrt{\mathrm{2}}\:.\:\mathrm{12}−\sqrt{\mathrm{2}}\:.\left(−\mathrm{4}\right)\:\right\} \\ $$$${E}\:=\:\frac{\mathrm{1}}{\mathrm{3}}.\mathrm{40}\sqrt{\mathrm{2}}\:=\:\frac{\mathrm{40}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Answered by Ar Brandon last updated on 03/Feb/21

Σ_(n=1) ^∞ (1/(n(n+2)))=(1/2)Σ_(n=1) ^∞ ((1/n)−(1/(n+2)))  (1/2)(1−(1/3)+(1/2)−(1/4)+(1/3)−(1/5)+(1/4)−(1/6)+∙∙∙)=(1/2)(1+(1/2))=(3/4)

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{2}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{6}}+\centerdot\centerdot\centerdot\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com