Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 130965 by Hilolaxon last updated on 31/Jan/21

Answered by bramlexs22 last updated on 31/Jan/21

(2) lim_(x→−∞) ((−x^5 (−8+(4/x^2 )−(4/x^5 )))/(−x^5 (−(2/x^2 )−(1/x^4 )+(7/x^5 )))) =−∞

$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{−{x}^{\mathrm{5}} \left(−\mathrm{8}+\frac{\mathrm{4}}{{x}^{\mathrm{2}} }−\frac{\mathrm{4}}{{x}^{\mathrm{5}} }\right)}{−{x}^{\mathrm{5}} \left(−\frac{\mathrm{2}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\frac{\mathrm{7}}{{x}^{\mathrm{5}} }\right)}\:=−\infty\: \\ $$$$\:\:\:\:\: \\ $$

Answered by bramlexs22 last updated on 31/Jan/21

(5) lim_(x→∞) (((2−10x+(−1+9x))/(2−10x)))^(15x+3)    = lim_(x→∞) (1+(1/((((2−10x)/(9x−1))))))^(15x+3)    = e^(lim_(x→∞) (((−10x+2)/(9x−1))).(15x+3))    = e^(−∞)  = 0

$$\left(\mathrm{5}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}−\mathrm{10}{x}+\left(−\mathrm{1}+\mathrm{9}{x}\right)}{\mathrm{2}−\mathrm{10}{x}}\right)^{\mathrm{15}{x}+\mathrm{3}} \\ $$$$\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{\left(\frac{\mathrm{2}−\mathrm{10}{x}}{\mathrm{9}{x}−\mathrm{1}}\right)}\right)^{\mathrm{15}{x}+\mathrm{3}} \\ $$$$\:=\:{e}^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{−\mathrm{10}{x}+\mathrm{2}}{\mathrm{9}{x}−\mathrm{1}}\right).\left(\mathrm{15}{x}+\mathrm{3}\right)} \\ $$$$\:=\:{e}^{−\infty} \:=\:\mathrm{0} \\ $$

Answered by greg_ed last updated on 31/Jan/21

 2)    lim_(x→−∞)    ((8x^5 )/(2x^3 ))   = lim_(x→−∞)  4x^2  = +∞.

$$\left.\:\mathrm{2}\right)\: \\ $$$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{8}\boldsymbol{{x}}^{\mathrm{5}} }{\mathrm{2}\boldsymbol{{x}}^{\mathrm{3}} }\:\:\:=\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} \:=\:+\infty. \\ $$

Answered by JDamian last updated on 31/Jan/21

2) lim_(x→−∞) ((8x^5 −4x^3 +3)/(2x^3 +x−7)) =    lim_(x→−∞) (4x^2 −4+((28x^2 +4x−25)/(2x^3 +x−7)))=   lim_(x→−∞) (4x^2 −4+((28+(4/x^1 )−((25)/x^2 ))/(2x+(1/x)−(7/x^2 ))))=∞

$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\mathrm{8}{x}^{\mathrm{5}} −\mathrm{4}{x}^{\mathrm{3}} +\mathrm{3}}{\mathrm{2}{x}^{\mathrm{3}} +{x}−\mathrm{7}}\:=\: \\ $$$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}+\frac{\mathrm{28}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{25}}{\mathrm{2}{x}^{\mathrm{3}} +{x}−\mathrm{7}}\right)= \\ $$$$\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}+\frac{\mathrm{28}+\frac{\mathrm{4}}{{x}^{\mathrm{1}} }−\frac{\mathrm{25}}{{x}^{\mathrm{2}} }}{\mathrm{2}{x}+\frac{\mathrm{1}}{{x}}−\frac{\mathrm{7}}{{x}^{\mathrm{2}} }}\right)=\infty \\ $$

Answered by mathmax by abdo last updated on 31/Jan/21

f(x)=(((x−1)/(10x−2)))^(15x+3)  ⇒f(x)=e^(15x+3)ln(((x−1)/(10x−2))))   =e^((15x+3)(−ln(10)+ln(((10x−10)/(10x−2))))) =e^((15x+3)(−ln(10)+ln(1−(8/(10x−2)))))   ⇒f(x)∼ e^(−ln(10)(15x+3))  .e^((15x+3)(((−4)/(5x−1))))   ⇒lim_(x→+∞) f(x)=e^(−∞) .e^(−12)  =0

$$\mathrm{f}\left(\mathrm{x}\right)=\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{10x}−\mathrm{2}}\right)^{\mathrm{15x}+\mathrm{3}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\left.\mathrm{15x}+\mathrm{3}\right)\mathrm{ln}\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{10x}−\mathrm{2}}\right)} \\ $$$$=\mathrm{e}^{\left(\mathrm{15x}+\mathrm{3}\right)\left(−\mathrm{ln}\left(\mathrm{10}\right)+\mathrm{ln}\left(\frac{\mathrm{10x}−\mathrm{10}}{\mathrm{10x}−\mathrm{2}}\right)\right)} =\mathrm{e}^{\left(\mathrm{15x}+\mathrm{3}\right)\left(−\mathrm{ln}\left(\mathrm{10}\right)+\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{8}}{\mathrm{10x}−\mathrm{2}}\right)\right)} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\sim\:\mathrm{e}^{−\mathrm{ln}\left(\mathrm{10}\right)\left(\mathrm{15x}+\mathrm{3}\right)} \:.\mathrm{e}^{\left(\mathrm{15x}+\mathrm{3}\right)\left(\frac{−\mathrm{4}}{\mathrm{5x}−\mathrm{1}}\right)} \:\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{−\infty} .\mathrm{e}^{−\mathrm{12}} \:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com