Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 130852 by Algoritm last updated on 29/Jan/21

Answered by Dwaipayan Shikari last updated on 29/Jan/21

lim_(x→0) ((1−cos(x/2))/x^2 )=2(((sin^2 (x/4))/x^2 ))=(2/(16))=(1/8)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−{cos}\frac{{x}}{\mathrm{2}}}{{x}^{\mathrm{2}} }=\mathrm{2}\left(\frac{{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{4}}}{{x}^{\mathrm{2}} }\right)=\frac{\mathrm{2}}{\mathrm{16}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Answered by benjo_mathlover last updated on 30/Jan/21

L′Ho^(,,) pital ⇒ lim_(x→0)  (((1/2)sin ((x/2)))/(2x)) = ((1/4)/2)=(1/8)

$$\mathrm{L}'\mathrm{H}\overset{,,} {\mathrm{o}pital}\:\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{2x}}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Answered by malwan last updated on 30/Jan/21

lim_(x→0)  ((1−[1−((((x/2))^2 )/(2!)) + ((((x/2))^4 )/(4!)) −...])/x^2 )  = ((((1/4)))/(2×1)) = (1/8)

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mathrm{1}−\left[\mathrm{1}−\frac{\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}!}\:+\:\frac{\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{4}} }{\mathrm{4}!}\:−...\right]}{{x}^{\mathrm{2}} } \\ $$$$=\:\frac{\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{2}×\mathrm{1}}\:=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Answered by malwan last updated on 30/Jan/21

another way  lim_(x→0)  ((1−cos^2 (x/2))/(x^2 (1+cos(x/2)))) = lim_(x→0) ((sin^2 (x/2))/(2x^2 ))  = (((1/2)×(1/2))/2) = (1/8)

$${another}\:{way} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mathrm{1}−{cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{{x}^{\mathrm{2}} \left(\mathrm{1}+{cos}\frac{{x}}{\mathrm{2}}\right)}\:=\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Answered by malwan last updated on 30/Jan/21

another solution  lim_(x→0) ((cox 0 − cos(x/2))/x^2 ) =lim_(x→0)  ((−2sin(x/4)sin((−x)/4))/x^2 )  = ((−2×(1/4)×((−1)/4))/1^2 ) = (1/8)

$${another}\:{solution} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{cox}\:\mathrm{0}\:−\:{cos}\frac{{x}}{\mathrm{2}}}{{x}^{\mathrm{2}} }\:=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{−\mathrm{2}{sin}\frac{{x}}{\mathrm{4}}{sin}\frac{−{x}}{\mathrm{4}}}{{x}^{\mathrm{2}} } \\ $$$$=\:\frac{−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}×\frac{−\mathrm{1}}{\mathrm{4}}}{\mathrm{1}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com