Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 130780 by LYKA last updated on 28/Jan/21

Commented by kaivan.ahmadi last updated on 29/Jan/21

b^→ =(2,−1,1)⇒∣b^→ ∣=(√6)⇒u^→ =(b^→ /(∣b^→ ∣))=((2/( (√6))),((−1)/( (√6))),(1/( (√6))))  ▽f=(3x^2 −3yz,3y^2 −3xz,3z^2 −3xy)  ▽f∣_((−1,0,1)) =(3,3,3)  D_u^→  f(x,y,z)=u^→ .▽f(b)=(√6)−((√6)/2)+((√6)/2)=(√6)

$$\overset{\rightarrow} {{b}}=\left(\mathrm{2},−\mathrm{1},\mathrm{1}\right)\Rightarrow\mid\overset{\rightarrow} {{b}}\mid=\sqrt{\mathrm{6}}\Rightarrow\overset{\rightarrow} {{u}}=\frac{\overset{\rightarrow} {{b}}}{\mid\overset{\rightarrow} {{b}}\mid}=\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}},\frac{−\mathrm{1}}{\:\sqrt{\mathrm{6}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\right) \\ $$$$\bigtriangledown{f}=\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{yz},\mathrm{3}{y}^{\mathrm{2}} −\mathrm{3}{xz},\mathrm{3}{z}^{\mathrm{2}} −\mathrm{3}{xy}\right) \\ $$$$\bigtriangledown{f}\mid_{\left(−\mathrm{1},\mathrm{0},\mathrm{1}\right)} =\left(\mathrm{3},\mathrm{3},\mathrm{3}\right) \\ $$$${D}_{\overset{\rightarrow} {{u}}} {f}\left({x},{y},{z}\right)=\overset{\rightarrow} {{u}}.\bigtriangledown{f}\left({b}\right)=\sqrt{\mathrm{6}}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}=\sqrt{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com