Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 130358 by ajfour last updated on 24/Jan/21

Commented by ajfour last updated on 24/Jan/21

Two identical ellipses.  Find maximum value of b/a.

$${Two}\:{identical}\:{ellipses}. \\ $$$${Find}\:{maximum}\:{value}\:{of}\:{b}/{a}. \\ $$

Commented by MJS_new last updated on 25/Jan/21

once again thinking backwards (exchanging  the ellipses)  let a=1  (1) search 2 tangents to the 1^(st)  ellipse with         t_1 ⊥t_2   (2) shift and rotate the ellipse to get the 2^(nd)          ellipse with center at t_1 ∩t_2  and axes t_1          and t_2          [the intersections of all possible rectangular          pairs of tangents form a circle with radius          (√(b^2 +1)) and center  ((0),(0) ) ]  I think we get the maximum b when t_1  and  t_2  are symmetric to x=0 ⇔ t_1 ∩t_2 = ((0),((√(b^2 +1))) )  in this case the equation of the 2^(nd)  ellipse is  easy to get because the angle of rotation is  (π/4). now we must intersect the ellipses and  find b in order to get exactly one intersection.  this leads to a 4^(th)  degree polynome for x.  I once posted the conditions for all possible  kinds of solutions for this. it leads to a 12^(th)   degree polynome for b^2  which has exactly  one real solution we can only approximate.  I get b≈.368 671 126 255    not sure if my idea is right... but it looks a  lot to me we will get a smaller value for b when  using a different pair of tangents...

$$\mathrm{once}\:\mathrm{again}\:\mathrm{thinking}\:\mathrm{backwards}\:\left(\mathrm{exchanging}\right. \\ $$$$\left.\mathrm{the}\:\mathrm{ellipses}\right) \\ $$$$\mathrm{let}\:{a}=\mathrm{1} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{search}\:\mathrm{2}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{ellipse}\:\mathrm{with} \\ $$$$\:\:\:\:\:\:\:{t}_{\mathrm{1}} \bot{t}_{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{shift}\:\mathrm{and}\:\mathrm{rotate}\:\mathrm{the}\:\mathrm{ellipse}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \\ $$$$\:\:\:\:\:\:\:\mathrm{ellipse}\:\mathrm{with}\:\mathrm{center}\:\mathrm{at}\:{t}_{\mathrm{1}} \cap{t}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{axes}\:{t}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\mathrm{and}\:{t}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\left[\mathrm{the}\:\mathrm{intersections}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{rectangular}\right. \\ $$$$\:\:\:\:\:\:\:\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{tangents}\:\mathrm{form}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{radius} \\ $$$$\left.\:\:\:\:\:\:\:\:\sqrt{{b}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{and}\:\mathrm{center}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\right] \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{maximum}\:{b}\:\mathrm{when}\:{t}_{\mathrm{1}} \:\mathrm{and} \\ $$$${t}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{symmetric}\:\mathrm{to}\:{x}=\mathrm{0}\:\Leftrightarrow\:{t}_{\mathrm{1}} \cap{t}_{\mathrm{2}} =\begin{pmatrix}{\mathrm{0}}\\{\sqrt{{b}^{\mathrm{2}} +\mathrm{1}}}\end{pmatrix} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{ellipse}\:\mathrm{is} \\ $$$$\mathrm{easy}\:\mathrm{to}\:\mathrm{get}\:\mathrm{because}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{rotation}\:\mathrm{is} \\ $$$$\frac{\pi}{\mathrm{4}}.\:\mathrm{now}\:\mathrm{we}\:\mathrm{must}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{ellipses}\:\mathrm{and} \\ $$$$\mathrm{find}\:{b}\:\mathrm{in}\:\mathrm{order}\:\mathrm{to}\:\mathrm{get}\:\mathrm{exactly}\:\mathrm{one}\:\mathrm{intersection}. \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{polynome}\:\mathrm{for}\:{x}. \\ $$$$\mathrm{I}\:\mathrm{once}\:\mathrm{posted}\:\mathrm{the}\:\mathrm{conditions}\:\mathrm{for}\:\mathrm{all}\:\mathrm{possible} \\ $$$$\mathrm{kinds}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{for}\:\mathrm{this}.\:\mathrm{it}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{12}^{\mathrm{th}} \\ $$$$\mathrm{degree}\:\mathrm{polynome}\:\mathrm{for}\:{b}^{\mathrm{2}} \:\mathrm{which}\:\mathrm{has}\:\mathrm{exactly} \\ $$$$\mathrm{one}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate}. \\ $$$$\mathrm{I}\:\mathrm{get}\:{b}\approx.\mathrm{368}\:\mathrm{671}\:\mathrm{126}\:\mathrm{255} \\ $$$$ \\ $$$$\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{my}\:\mathrm{idea}\:\mathrm{is}\:\mathrm{right}...\:\mathrm{but}\:\mathrm{it}\:\mathrm{looks}\:\mathrm{a} \\ $$$$\mathrm{lot}\:\mathrm{to}\:\mathrm{me}\:\mathrm{we}\:\mathrm{will}\:\mathrm{get}\:\mathrm{a}\:\mathrm{smaller}\:\mathrm{value}\:\mathrm{for}\:{b}\:\mathrm{when} \\ $$$$\mathrm{using}\:\mathrm{a}\:\mathrm{different}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{tangents}... \\ $$

Commented by MJS_new last updated on 25/Jan/21

the equations for plotting are:  ellipse 1:    y=±b(√(1−x^2 ))  tangents:  y=±x+(√(b^2 +1))  ellipse 2:    y=((1−b^2 )/(b^2 +1))x+(√(b^2 +1))±((b(√(2b^2 +2−4x^2 )))/(b^2 +1))  it seems obvious that  (1) if b gets smaller the ellipses will lose contact       ⇒ we have to rotate the tangents  (2) if b gets larger we get 2 intersections       ⇒ we have to rotate the tangents but then       the space gets even smaller       [this needs a proof...]

$$\mathrm{the}\:\mathrm{equations}\:\mathrm{for}\:\mathrm{plotting}\:\mathrm{are}: \\ $$$$\mathrm{ellipse}\:\mathrm{1}:\:\:\:\:{y}=\pm{b}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{tangents}:\:\:{y}=\pm{x}+\sqrt{{b}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{ellipse}\:\mathrm{2}:\:\:\:\:{y}=\frac{\mathrm{1}−{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} +\mathrm{1}}{x}+\sqrt{{b}^{\mathrm{2}} +\mathrm{1}}\pm\frac{{b}\sqrt{\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}−\mathrm{4}{x}^{\mathrm{2}} }}{{b}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{it}\:\mathrm{seems}\:\mathrm{obvious}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{if}\:{b}\:\mathrm{gets}\:\mathrm{smaller}\:\mathrm{the}\:\mathrm{ellipses}\:\mathrm{will}\:\mathrm{lose}\:\mathrm{contact} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{rotate}\:\mathrm{the}\:\mathrm{tangents} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{if}\:{b}\:\mathrm{gets}\:\mathrm{larger}\:\mathrm{we}\:\mathrm{get}\:\mathrm{2}\:\mathrm{intersections} \\ $$$$\:\:\:\:\:\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{rotate}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{but}\:\mathrm{then} \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{space}\:\mathrm{gets}\:\mathrm{even}\:\mathrm{smaller} \\ $$$$\:\:\:\:\:\left[\mathrm{this}\:\mathrm{needs}\:\mathrm{a}\:\mathrm{proof}...\right] \\ $$

Commented by MJS_new last updated on 25/Jan/21

above (1) obviously we rotate to the left  ⇒ (2) we cannot rotate to the left with  larger b but rotating to the right seems no  good idea either [plot it!]

$$\mathrm{above}\:\left(\mathrm{1}\right)\:\mathrm{obviously}\:\mathrm{we}\:\mathrm{rotate}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left} \\ $$$$\Rightarrow\:\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{rotate}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left}\:\mathrm{with} \\ $$$$\mathrm{larger}\:{b}\:\mathrm{but}\:\mathrm{rotating}\:\mathrm{to}\:\mathrm{the}\:\mathrm{right}\:\mathrm{seems}\:\mathrm{no} \\ $$$$\mathrm{good}\:\mathrm{idea}\:\mathrm{either}\:\left[\mathrm{plot}\:\mathrm{it}!\right] \\ $$

Commented by mr W last updated on 25/Jan/21

say μ=(b/a)  μ_(max)  can not be obtained exactly.  in an earlier question Q127509 i got  μ_(max) ≈0.38436919447  which occurs not at an angle (π/4).

$${say}\:\mu=\frac{{b}}{{a}} \\ $$$$\mu_{{max}} \:{can}\:{not}\:{be}\:{obtained}\:{exactly}. \\ $$$${in}\:{an}\:{earlier}\:{question}\:{Q}\mathrm{127509}\:{i}\:{got} \\ $$$$\mu_{{max}} \approx\mathrm{0}.\mathrm{38436919447} \\ $$$${which}\:{occurs}\:{not}\:{at}\:{an}\:{angle}\:\frac{\pi}{\mathrm{4}}. \\ $$

Commented by mr W last updated on 25/Jan/21

Commented by MJS_new last updated on 25/Jan/21

I see.  does the y−axis of the red ellipse intersect  the green one at  ((0),((−b)) ) ?

$$\mathrm{I}\:\mathrm{see}. \\ $$$$\mathrm{does}\:\mathrm{the}\:{y}−\mathrm{axis}\:\mathrm{of}\:\mathrm{the}\:\mathrm{red}\:\mathrm{ellipse}\:\mathrm{intersect} \\ $$$$\mathrm{the}\:\mathrm{green}\:\mathrm{one}\:\mathrm{at}\:\begin{pmatrix}{\mathrm{0}}\\{−{b}}\end{pmatrix}\:? \\ $$

Commented by mr W last updated on 25/Jan/21

no. we can see this in the diagram.

$${no}.\:{we}\:{can}\:{see}\:{this}\:{in}\:{the}\:{diagram}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com