Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 130301 by sarahvalencia last updated on 24/Jan/21

Answered by benjo_mathlover last updated on 24/Jan/21

(2) (dy/dx) = (x^2 /y^2 ) ⇒ ∫ y^2 dy−∫x^2 dx=C   y^3 −x^3  = 3C ; y^3 −x^3  = λ

$$\left(\mathrm{2}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}^{\mathrm{2}} }\:\Rightarrow\:\int\:\mathrm{y}^{\mathrm{2}} \mathrm{dy}−\int\mathrm{x}^{\mathrm{2}} \mathrm{dx}=\mathrm{C} \\ $$$$\:\mathrm{y}^{\mathrm{3}} −\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{3C}\:;\:\mathrm{y}^{\mathrm{3}} −\mathrm{x}^{\mathrm{3}} \:=\:\lambda\: \\ $$

Commented by benjo_mathlover last updated on 24/Jan/21

(3) particular solution with y(1)=2   2−1 = λ ; λ=1  ∴ y^3  = x^3 +1

$$\left(\mathrm{3}\right)\:\mathrm{particular}\:\mathrm{solution}\:\mathrm{with}\:\mathrm{y}\left(\mathrm{1}\right)=\mathrm{2} \\ $$$$\:\mathrm{2}−\mathrm{1}\:=\:\lambda\:;\:\lambda=\mathrm{1} \\ $$$$\therefore\:\mathrm{y}^{\mathrm{3}} \:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{1}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com