Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129890 by 0731619177 last updated on 20/Jan/21

Answered by Olaf last updated on 20/Jan/21

lim_(x→3) ((Γ(x+1)−6)/(xx−33))  = lim_(x→3) ((Γ(x+1)−6)/(11(x−3)))  = lim_(x→3) ((Γ′(x+1))/(11))  = lim_(x→3) ((Γ(x+1)ψ(x+1))/(11))  = ((Γ(4)ψ(4))/(11))  = ((3!(H_3 −γ))/(11))  = ((6(((11)/6)−γ))/(11))  = 1−(6/(11))γ    (1)    ψ(3) = H_2 −γ = (3/2)−γ    (2)    S = Σ_(n=1) ^∞ ((((1/2))^n )/n)  (1/(1−x)) = Σ_(n=0) ^∞ x^n   −ln(1−x) = Σ_(n=0) ^∞ (x^(n+1) /(n+1)) = Σ_(n=1) ^∞ (x^n /n)  For x = (1/2), S = ln2    (3)    With (1), (2) and (3), the result is :  {(1−(6/(11))γ)^((3/2)−γ) }^(ln2)   ≈ {(1−(6/(11))0,5772156649)^((3/2)−0,5772156649) }^(ln2)   ≈ 0,7851749027

$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\Gamma\left({x}+\mathrm{1}\right)−\mathrm{6}}{{xx}−\mathrm{33}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\Gamma\left({x}+\mathrm{1}\right)−\mathrm{6}}{\mathrm{11}\left({x}−\mathrm{3}\right)} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\Gamma'\left({x}+\mathrm{1}\right)}{\mathrm{11}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\Gamma\left({x}+\mathrm{1}\right)\psi\left({x}+\mathrm{1}\right)}{\mathrm{11}} \\ $$$$=\:\frac{\Gamma\left(\mathrm{4}\right)\psi\left(\mathrm{4}\right)}{\mathrm{11}} \\ $$$$=\:\frac{\mathrm{3}!\left({H}_{\mathrm{3}} −\gamma\right)}{\mathrm{11}} \\ $$$$=\:\frac{\mathrm{6}\left(\frac{\mathrm{11}}{\mathrm{6}}−\gamma\right)}{\mathrm{11}} \\ $$$$=\:\mathrm{1}−\frac{\mathrm{6}}{\mathrm{11}}\gamma\:\:\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\psi\left(\mathrm{3}\right)\:=\:{H}_{\mathrm{2}} −\gamma\:=\:\frac{\mathrm{3}}{\mathrm{2}}−\gamma\:\:\:\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} }{{n}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \\ $$$$−\mathrm{ln}\left(\mathrm{1}−{x}\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}} \\ $$$$\mathrm{For}\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{S}\:=\:\mathrm{ln2}\:\:\:\:\left(\mathrm{3}\right) \\ $$$$ \\ $$$$\mathrm{With}\:\left(\mathrm{1}\right),\:\left(\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{3}\right),\:\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:: \\ $$$$\left\{\left(\mathrm{1}−\frac{\mathrm{6}}{\mathrm{11}}\gamma\right)^{\frac{\mathrm{3}}{\mathrm{2}}−\gamma} \right\}^{\mathrm{ln2}} \\ $$$$\approx\:\left\{\left(\mathrm{1}−\frac{\mathrm{6}}{\mathrm{11}}\mathrm{0},\mathrm{5772156649}\right)^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{0},\mathrm{5772156649}} \right\}^{\mathrm{ln2}} \\ $$$$\approx\:\mathrm{0},\mathrm{7851749027} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com