Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 128652 by ajfour last updated on 09/Jan/21

Commented by ajfour last updated on 09/Jan/21

Find the radius of outer circle  in terms of inradii R and r of  two isosceles right angled   triangles (as shown, see fig).

$${Find}\:{the}\:{radius}\:{of}\:{outer}\:{circle} \\ $$$${in}\:{terms}\:{of}\:{inradii}\:{R}\:{and}\:{r}\:{of} \\ $$$${two}\:{isosceles}\:{right}\:{angled}\: \\ $$$${triangles}\:\left({as}\:{shown},\:{see}\:{fig}\right). \\ $$

Answered by mr W last updated on 09/Jan/21

Commented by mr W last updated on 09/Jan/21

p=(√2)(R+(√2)R)=(2+(√2))R  q=(2+(√2))r  AC=(√(p^2 +q^2 ))=(2+(√2))(√(R^2 +r^2 ))  ∠AOC=2×∠ABC=2×45°=90°  R_o =OA=OC=((AC)/( (√2)))=(((2+(√2))(√(R^2 +r^2 )))/( (√2)))  ⇒R_o =((√2)+1)(√(R^2 +r^2 ))

$${p}=\sqrt{\mathrm{2}}\left({R}+\sqrt{\mathrm{2}}{R}\right)=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){R} \\ $$$${q}=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){r} \\ $$$${AC}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }=\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$$\angle{AOC}=\mathrm{2}×\angle{ABC}=\mathrm{2}×\mathrm{45}°=\mathrm{90}° \\ $$$${R}_{{o}} ={OA}={OC}=\frac{{AC}}{\:\sqrt{\mathrm{2}}}=\frac{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} }}{\:\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{R}_{{o}} =\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 09/Jan/21

Great way Sir, i tried to think  a better way, got entangled!

$${Great}\:{way}\:{Sir},\:{i}\:{tried}\:{to}\:{think} \\ $$$${a}\:{better}\:{way},\:{got}\:{entangled}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com