Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 128457 by SLVR last updated on 07/Jan/21

Commented by BHOOPENDRA last updated on 07/Jan/21

x^5 =((133x−78)/(133−78x))  78x^6 −133x^5 +133−78=0  (x^2 −1)(78x^4 −133x^3 +78x^2 +78−133x  ⇒let x+(1/x)=t,then x^2 +(1/x^2 )=t^2 −2  78(x^2 +(1/x^2 )) −133(x+(1/x))+78=0  =78(t^2 −2)−133(t)+78=0  =78t^2 −133t−78=0  ⇒t=((13)/6)and −(6/(13))  when x+(1/x)=((13)/6)  x=(2/3),(3/2)  roots of the equation are 1,−1,(2/3),(3/2)

$${x}^{\mathrm{5}} =\frac{\mathrm{133}{x}−\mathrm{78}}{\mathrm{133}−\mathrm{78}{x}} \\ $$$$\mathrm{78}{x}^{\mathrm{6}} −\mathrm{133}{x}^{\mathrm{5}} +\mathrm{133}−\mathrm{78}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{78}{x}^{\mathrm{4}} −\mathrm{133}{x}^{\mathrm{3}} +\mathrm{78}{x}^{\mathrm{2}} +\mathrm{78}−\mathrm{133}{x}\right. \\ $$$$\Rightarrow{let}\:{x}+\frac{\mathrm{1}}{{x}}={t},{then}\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }={t}^{\mathrm{2}} −\mathrm{2} \\ $$$$\mathrm{78}\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:−\mathrm{133}\left({x}+\frac{\mathrm{1}}{{x}}\right)+\mathrm{78}=\mathrm{0} \\ $$$$=\mathrm{78}\left({t}^{\mathrm{2}} −\mathrm{2}\right)−\mathrm{133}\left({t}\right)+\mathrm{78}=\mathrm{0} \\ $$$$=\mathrm{78}{t}^{\mathrm{2}} −\mathrm{133}{t}−\mathrm{78}=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{\mathrm{13}}{\mathrm{6}}{and}\:−\frac{\mathrm{6}}{\mathrm{13}} \\ $$$${when}\:{x}+\frac{\mathrm{1}}{{x}}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$${x}=\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${roots}\:{of}\:{the}\:{equation}\:{are}\:\mathrm{1},−\mathrm{1},\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com