Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128262 by Ahmed1hamouda last updated on 06/Jan/21

Answered by mr W last updated on 06/Jan/21

∫_0 ^∞ ∫_0 ^∞ ((dxdy)/((x^2 +y^2 +a^2 )^2 ))  =∫_0 ^∞ [∫_0 ^∞ (dx/((x^2 +y^2 +a^2 )^2 ))]dy  =∫_0 ^∞ (1/(2(y^2 +a^2 )))[((tan^(−1) (x/( (√(y^2 +a^2 )))))/( (√(y^2 +a^2 ))))+(x/(x^2 +y^2 +a^2 ))]_0 ^∞ dy  =∫_0 ^∞ (1/(2(y^2 +a^2 )))×(π/( 2(√(y^2 +a^2 ))))dy  =(π/4)∫_0 ^∞ (dy/( (y^2 +a^2 )(√(y^2 +a^2 ))))  =(π/(4a^2 ))[(y/( (√(y^2 +a^2 ))))]_0 ^∞   =(π/(4a^2 ))×lim_(y→∞) (1/( (√(1+(a^2 /y^2 )))))  =(π/(4a^2 ))

$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{dxdy}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left[\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\right]{dy} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}\left({y}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}\left[\frac{\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\:\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} }}}{\:\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} }}+\frac{{x}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{a}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\infty} {dy} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}\left({y}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}×\frac{\pi}{\:\mathrm{2}\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} }}{dy} \\ $$$$=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \frac{{dy}}{\:\left({y}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} }} \\ $$$$=\frac{\pi}{\mathrm{4}{a}^{\mathrm{2}} }\left[\frac{{y}}{\:\sqrt{{y}^{\mathrm{2}} +{a}^{\mathrm{2}} }}\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{\pi}{\mathrm{4}{a}^{\mathrm{2}} }×\underset{{y}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{y}^{\mathrm{2}} }}} \\ $$$$=\frac{\pi}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$

Answered by mnjuly1970 last updated on 06/Jan/21

x=rcos(θ)                       ⇒ ∣j(r,θ)=∣((∂(x,y))/(∂(r,θ)))∣=r  y=rsin(θ)  Ω=∫_0 ^(π/2) ∫_0 ^( ∞) (r/((r^2 +a^2 )^2 ))drdθ  =∫_0 ^( (π/2)) [((−1)/(2(r^2 +a^2 )))]_0 ^∞ dθ=∫_0 ^( (π/2)) (1/(2a^2 ))dθ=(π/(4a^2 ))                            Ω=(π/(4a^2 ))  ✓

$${x}={rcos}\left(\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mid{j}\left({r},\theta\right)=\mid\frac{\partial\left({x},{y}\right)}{\partial\left({r},\theta\right)}\mid={r} \\ $$$${y}={rsin}\left(\theta\right) \\ $$$$\Omega=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\:\infty} \frac{{r}}{\left({r}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{drd}\theta \\ $$$$=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left[\frac{−\mathrm{1}}{\mathrm{2}\left({r}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}\right]_{\mathrm{0}} ^{\infty} {d}\theta=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} }{d}\theta=\frac{\pi}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\frac{\pi}{\mathrm{4}{a}^{\mathrm{2}} }\:\:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com