Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128025 by Algoritm last updated on 03/Jan/21

Answered by Olaf last updated on 03/Jan/21

Let Φ_n  = ∫_0 ^(2π) e^(cosθ) cos(nθ−sinθ)dθ  Let Ω_n  = ∫_0 ^(2π) e^(cosθ) e^(i(nθ−sinθ)) dθ  Ω_n  = ∫_0 ^(2π) e^e^(−iθ)  e^(inθ) dθ  Ω_n  = i∫_0 ^(2π) (−ie^(−iθ) e^e^(−iθ)  )e^(i(n+1)θ) dθ  Ω_n  = i[e^e^(−iθ)  e^(i(n+1)θ) ]_0 ^(2π) −i∫_0 ^(2π) e^e^(−iθ)  i(n+1)e^(i(n+1)θ) dθ  Ω_n  = (n+1)Ω_(n+1)   Ω_(n+1)  = (Ω_n /(n+1)) (1)  Ω_0  = ∫_0 ^(2π) e^e^(−iθ)  dθ  Ω_0  = ∫_C e^z^−  dz (C : trigonometric circle)  Ω_0  = ∫_C e^z dz = 2πr (with r = 1)  Ω_0  = 2π (2)  (1) and (2) : Ω_n  = ((2π)/(n!)) (real number)  Φ_n  = Re(Ω_n ) = Ω_n  = ((2π)/(n!))

$$\mathrm{Let}\:\Phi_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{\mathrm{cos}\theta} \mathrm{cos}\left({n}\theta−\mathrm{sin}\theta\right){d}\theta \\ $$$$\mathrm{Let}\:\Omega_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{\mathrm{cos}\theta} {e}^{{i}\left({n}\theta−\mathrm{sin}\theta\right)} {d}\theta \\ $$$$\Omega_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{{e}^{−{i}\theta} } {e}^{{in}\theta} {d}\theta \\ $$$$\Omega_{{n}} \:=\:{i}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(−{ie}^{−{i}\theta} {e}^{{e}^{−{i}\theta} } \right){e}^{{i}\left({n}+\mathrm{1}\right)\theta} {d}\theta \\ $$$$\Omega_{{n}} \:=\:{i}\left[{e}^{{e}^{−{i}\theta} } {e}^{{i}\left({n}+\mathrm{1}\right)\theta} \right]_{\mathrm{0}} ^{\mathrm{2}\pi} −{i}\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{{e}^{−{i}\theta} } {i}\left({n}+\mathrm{1}\right){e}^{{i}\left({n}+\mathrm{1}\right)\theta} {d}\theta \\ $$$$\Omega_{{n}} \:=\:\left({n}+\mathrm{1}\right)\Omega_{{n}+\mathrm{1}} \\ $$$$\Omega_{{n}+\mathrm{1}} \:=\:\frac{\Omega_{{n}} }{{n}+\mathrm{1}}\:\left(\mathrm{1}\right) \\ $$$$\Omega_{\mathrm{0}} \:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{{e}^{−{i}\theta} } {d}\theta \\ $$$$\Omega_{\mathrm{0}} \:=\:\int_{\mathcal{C}} {e}^{\overset{−} {{z}}} {dz}\:\left(\mathcal{C}\::\:\mathrm{trigonometric}\:\mathrm{circle}\right) \\ $$$$\Omega_{\mathrm{0}} \:=\:\int_{\mathcal{C}} {e}^{{z}} {dz}\:=\:\mathrm{2}\pi{r}\:\left(\mathrm{with}\:{r}\:=\:\mathrm{1}\right) \\ $$$$\Omega_{\mathrm{0}} \:=\:\mathrm{2}\pi\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\::\:\Omega_{{n}} \:=\:\frac{\mathrm{2}\pi}{{n}!}\:\left(\mathrm{real}\:\mathrm{number}\right) \\ $$$$\Phi_{{n}} \:=\:\mathrm{Re}\left(\Omega_{{n}} \right)\:=\:\Omega_{{n}} \:=\:\frac{\mathrm{2}\pi}{{n}!} \\ $$

Commented by mindispower last updated on 03/Jan/21

nice way sir

$${nice}\:{way}\:{sir}\: \\ $$

Answered by mindispower last updated on 03/Jan/21

=∫_0 ^(2π) Re(e^(inθ+e^(−iθ) ) )dθ   =Re∫_0 ^(2π) e^(−inθ+e^(iθ) ) dθ,z=e^(iθ) ⇒dz=ie^(iθ) dθ  =Re ∫_C ((−ie^z )/z^(n+1) )dz  =Re(.2iπRes(−i(e^z /z^(n+1) ),0))  =Re.2iπ∂_z ^n .(z^(n+1) /(n!))(−i(e^z /z^(n+1) ),z=0)  =Re(((2π)/(n!)).e^0 )=((2π)/(n!))

$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} {Re}\left({e}^{{in}\theta+{e}^{−{i}\theta} } \right){d}\theta\: \\ $$$$={Re}\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{−{in}\theta+{e}^{{i}\theta} } {d}\theta,{z}={e}^{{i}\theta} \Rightarrow{dz}={ie}^{{i}\theta} {d}\theta \\ $$$$={Re}\:\int_{{C}} \frac{−{ie}^{{z}} }{{z}^{{n}+\mathrm{1}} }{dz} \\ $$$$={Re}\left(.\mathrm{2}{i}\pi{Res}\left(−{i}\frac{{e}^{{z}} }{{z}^{{n}+\mathrm{1}} },\mathrm{0}\right)\right) \\ $$$$={Re}.\mathrm{2}{i}\pi\partial_{{z}} ^{{n}} .\frac{{z}^{{n}+\mathrm{1}} }{{n}!}\left(−{i}\frac{{e}^{{z}} }{{z}^{{n}+\mathrm{1}} },{z}=\mathrm{0}\right) \\ $$$$={Re}\left(\frac{\mathrm{2}\pi}{{n}!}.{e}^{\mathrm{0}} \right)=\frac{\mathrm{2}\pi}{{n}!} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com