Question Number 127833 by Algoritm last updated on 02/Jan/21 | ||
Answered by mathmax by abdo last updated on 02/Jan/21 | ||
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{\mathrm{cosx}}{\:\sqrt{\mathrm{4}−\mathrm{x}}}\mathrm{dx}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\sqrt{\mathrm{4}−\mathrm{x}}=\mathrm{t}\:\Rightarrow\mathrm{4}−\mathrm{x}=\mathrm{t}^{\mathrm{2}} \\ $$$$\mathrm{I}\:=\int_{\mathrm{2}} ^{\mathrm{0}} \:\frac{\mathrm{cos}\left(\mathrm{4}−\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{t}}\left(−\mathrm{2t}\right)\mathrm{dt}\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{cos}\left(\mathrm{4}−\mathrm{t}^{\mathrm{2}} \right)\mathrm{dt} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{cos4}\:\mathrm{cost}^{\mathrm{2}} +\mathrm{sin4}\:\mathrm{sint}^{\mathrm{2}} \right)\mathrm{dt} \\ $$$$=\mathrm{2cos4}\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{cos}\left(\mathrm{t}^{\mathrm{2}} \right)\mathrm{dt}\:+\mathrm{2sin4}\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{sin}\left(\mathrm{t}^{\mathrm{2}} \right)\mathrm{dt}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{cosu}=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{u}^{\mathrm{2n}} }{\left(\mathrm{2n}\right)!} \\ $$$$\mathrm{and}\:\mathrm{sinu}=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{u}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\mathrm{I}\:=\mathrm{2cos4}\:\int_{\mathrm{0}} ^{\mathrm{2}} \sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{t}^{\mathrm{2n}} }{\left(\mathrm{2n}\right)!}\mathrm{dt}\:+\mathrm{2sin4}\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{t}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{dt} \\ $$$$=\mathrm{2cos4}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}\right)!}\left[\frac{\mathrm{t}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{2}} \:+\mathrm{2sin4}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\left[\frac{\mathrm{t}^{\mathrm{2n}+\mathrm{2}} }{\mathrm{2n}+\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\mathrm{2cos4}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{2}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)\left(\mathrm{2n}\right)!}\:+\mathrm{2sin4}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{2}^{\mathrm{2n}+\mathrm{2}} }{\left(\mathrm{2n}+\mathrm{2}\right)\left(\mathrm{2n}+\mathrm{1}\right)!} \\ $$ | ||
Answered by Bird last updated on 02/Jan/21 | ||
$${let}\:{determine}\:{approximate}\:{vslue}\:{of}\:{I} \\ $$$${we}\:{have}\:{cosu}=\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}+\frac{{u}^{\mathrm{4}} }{\mathrm{4}!}−...\:\Rightarrow \\ $$$$\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\leqslant{cosu}\:\leqslant\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}+\frac{{u}^{\mathrm{4}} }{\mathrm{4}!}\:\Rightarrow \\ $$$$\frac{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}{\:\sqrt{\mathrm{4}−{x}}}\leqslant\frac{{cosx}}{\:\sqrt{\mathrm{4}−{x}}}\leqslant\frac{\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}+\frac{{u}^{\mathrm{4}} }{\mathrm{4}!}}{\:\sqrt{\mathrm{4}−{x}}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}−{x}}}−\frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{4}−{x}}}\right){dx}\leqslant{I}\:\leqslant \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}−{x}}}−\int_{\mathrm{0}} ^{\mathrm{4}\:} \:\frac{{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{4}−{x}}}{dx}+\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{{x}^{\mathrm{4}} }{\mathrm{4}!\sqrt{\mathrm{4}−{x}}}{dx} \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{{dx}}{\:\sqrt{\mathrm{4}−{x}}}=\left[−\mathrm{2}\sqrt{\mathrm{4}−{x}}\right]_{\mathrm{0}} ^{\mathrm{4}} \\ $$$$=\mathrm{4} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{4}−{x}}}{dx}\:=_{\mathrm{4}−{x}={t}^{\mathrm{2}} } \:\:\int_{\mathrm{2}} ^{\mathrm{0}} \:\frac{\left(\mathrm{4}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}{t}}\left(−\mathrm{2}{t}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \left({t}^{\mathrm{4}} −\mathrm{8}{t}^{\mathrm{2}} \:+\mathrm{16}\right){dt} \\ $$$$=\left[\frac{{t}^{\mathrm{5}} }{\mathrm{5}}−\frac{\mathrm{8}}{\mathrm{3}}{t}^{\mathrm{3}} \:+\mathrm{16}{t}\right]_{\mathrm{0}} ^{\mathrm{2}\:} =\frac{\mathrm{2}^{\mathrm{5}} }{\mathrm{5}}−\frac{\mathrm{64}}{\mathrm{3}}+\mathrm{32}=... \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \:\:\frac{{x}^{\mathrm{4}} }{\mathrm{4}!\sqrt{\mathrm{4}−{x}}}{dx}\:=_{\mathrm{4}−{x}={t}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{2}} ^{\mathrm{0}} \:\:\frac{\left(\mathrm{4}−{t}^{\mathrm{2}} \right)^{\mathrm{4}} }{\mathrm{4}!{t}}\left(−\mathrm{2}{t}\right){dt} \\ $$$$=\frac{\mathrm{2}}{\mathrm{4}!}\int_{\mathrm{0}} ^{\mathrm{2}} \left({t}^{\mathrm{4}} −\mathrm{8}{t}^{\mathrm{2}\:} +\mathrm{16}\right)^{\mathrm{2}\:} {dt} \\ $$$$=\frac{\mathrm{2}}{\mathrm{4}!}\int_{\mathrm{0}} ^{\mathrm{2}} \left(\left({t}^{\mathrm{4}} −\mathrm{8}{t}^{\mathrm{2}} \right)^{\mathrm{2}} \:+\mathrm{32}\left({t}^{\mathrm{4}} −\mathrm{8}{t}^{\mathrm{2}} \right)+\mathrm{16}^{\mathrm{2}} \right){dt}=... \\ $$$${rest}\:{to}\:{collect}\:{the}\:{vslues}... \\ $$ | ||