Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 127641 by Study last updated on 31/Dec/20

Answered by Dwaipayan Shikari last updated on 31/Dec/20

1.2.3.4.5...=e^(−ζ′(0)) =e^(log((√(2π)))) =(√(2π))

$$\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}...={e}^{−\zeta'\left(\mathrm{0}\right)} ={e}^{{log}\left(\sqrt{\mathrm{2}\pi}\right)} =\sqrt{\mathrm{2}\pi} \\ $$

Commented by MJS_new last updated on 31/Dec/20

great! from now on these shall be my formulas  of the circle  p=e^(−2ζ′(0)) r  A=(((∞!(√2)r)/( 2)))^2

$$\mathrm{great}!\:\mathrm{from}\:\mathrm{now}\:\mathrm{on}\:\mathrm{these}\:\mathrm{shall}\:\mathrm{be}\:\mathrm{my}\:\mathrm{formulas} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$${p}=\mathrm{e}^{−\mathrm{2}\zeta'\left(\mathrm{0}\right)} {r} \\ $$$${A}=\left(\frac{\infty!\sqrt{\mathrm{2}}{r}}{\:\mathrm{2}}\right)^{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 31/Dec/20

Hahhahh!!  1.2.3.4.5...=e^(−𝛇^′ (0)) =(√(2π)) (Ramanujan product)  The question  has no meaning but an answer    😁

$${Hahhahh}!! \\ $$$$\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}...=\boldsymbol{{e}}^{−\boldsymbol{\zeta}^{'} \left(\mathrm{0}\right)} =\sqrt{\mathrm{2}\pi}\:\left({Ramanujan}\:{product}\right) \\ $$$$\boldsymbol{{The}}\:\boldsymbol{{question}}\:\:\boldsymbol{{has}}\:\boldsymbol{{no}}\:\boldsymbol{{meaning}}\:\boldsymbol{{but}}\:\boldsymbol{{an}}\:\boldsymbol{{answer}} \\ $$$$ \\ $$😁

Commented by Dwaipayan Shikari last updated on 31/Dec/20

A=((−(1/2))!r)^2

$$\boldsymbol{\mathcal{A}}=\left(\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)!{r}\right)^{\mathrm{2}} \\ $$

Commented by MJS_new last updated on 31/Dec/20

yes

$${yes} \\ $$

Commented by Study last updated on 31/Dec/20

is it has another furmola sir teacher??

$${is}\:{it}\:{has}\:{another}\:{furmola}\:{sir}\:{teacher}?? \\ $$

Commented by Dwaipayan Shikari last updated on 31/Dec/20

Have a great year sir!  ⌊∫_0 ^1 (1/( ((x^(2020) −x^(2021) ))^(1/(2021)) ))dx⌋=2021

$${Have}\:{a}\:{great}\:{year}\:{sir}! \\ $$$$\lfloor\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{2021}}]{{x}^{\mathrm{2020}} −{x}^{\mathrm{2021}} }}{dx}\rfloor=\mathrm{2021} \\ $$

Commented by Study last updated on 01/Jan/21

infinite but no known number so why  get a factorial?

$${infinite}\:{but}\:{no}\:{known}\:{number}\:{so}\:{why} \\ $$$${get}\:{a}\:{factorial}? \\ $$

Commented by Study last updated on 02/Jan/21

?????

$$????? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com