Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 126408 by morarupaula last updated on 20/Dec/20

Answered by Dwaipayan Shikari last updated on 20/Dec/20

x^(•••) +x^• =0       x=e^(λt)   λ^3 +λ=0⇒λ=0 , λ=±i  x=Λ+Γe^(λti) +Φe^(−λit) =Λ+Ψcos(t)+βsin(t)

$$\overset{\bullet\bullet\bullet} {{x}}+\overset{\bullet} {{x}}=\mathrm{0}\:\:\:\:\:\:\:{x}={e}^{\lambda{t}} \\ $$$$\lambda^{\mathrm{3}} +\lambda=\mathrm{0}\Rightarrow\lambda=\mathrm{0}\:,\:\lambda=\pm{i} \\ $$$${x}=\Lambda+\Gamma{e}^{\lambda{ti}} +\Phi{e}^{−\lambda{it}} =\Lambda+\Psi{cos}\left({t}\right)+\beta{sin}\left({t}\right) \\ $$

Answered by Olaf last updated on 22/Dec/20

x^(′′′) +x′ = 0  x′′′x′′+x′′x′ = 0  (1/2)x^(′′^2 ) +(1/2)x′^2  = C_1  (C_1 ≥0)  x^(′′^2 ) +x′^2  = C_2  (C_2 ≥0)  ((x′′^2 )/( (√(C_2 −x′^2 )))) = 1  arcsin(((x′)/( (√C_2 )))) = t+C_3   arcsin(((x′)/( C_4 ))) = t+C_3   x′ = C_4 sin(t+C_3 )  x = −C_4 cos(t+C_3 )+C_5   General solution :  x = αcos(t+β)+γ

$${x}^{'''} +{x}'\:=\:\mathrm{0} \\ $$$${x}'''{x}''+{x}''{x}'\:=\:\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{x}^{''^{\mathrm{2}} } +\frac{\mathrm{1}}{\mathrm{2}}{x}'^{\mathrm{2}} \:=\:\mathrm{C}_{\mathrm{1}} \:\left(\mathrm{C}_{\mathrm{1}} \geqslant\mathrm{0}\right) \\ $$$${x}^{''^{\mathrm{2}} } +{x}'^{\mathrm{2}} \:=\:\mathrm{C}_{\mathrm{2}} \:\left(\mathrm{C}_{\mathrm{2}} \geqslant\mathrm{0}\right) \\ $$$$\frac{{x}''^{\mathrm{2}} }{\:\sqrt{\mathrm{C}_{\mathrm{2}} −{x}'^{\mathrm{2}} }}\:=\:\mathrm{1} \\ $$$$\mathrm{arcsin}\left(\frac{{x}'}{\:\sqrt{\mathrm{C}_{\mathrm{2}} }}\right)\:=\:{t}+\mathrm{C}_{\mathrm{3}} \\ $$$$\mathrm{arcsin}\left(\frac{{x}'}{\:\mathrm{C}_{\mathrm{4}} }\right)\:=\:{t}+\mathrm{C}_{\mathrm{3}} \\ $$$${x}'\:=\:\mathrm{C}_{\mathrm{4}} \mathrm{sin}\left({t}+\mathrm{C}_{\mathrm{3}} \right) \\ $$$${x}\:=\:−\mathrm{C}_{\mathrm{4}} \mathrm{cos}\left({t}+\mathrm{C}_{\mathrm{3}} \right)+\mathrm{C}_{\mathrm{5}} \\ $$$$\mathrm{General}\:\mathrm{solution}\:: \\ $$$${x}\:=\:\alpha\mathrm{cos}\left({t}+\beta\right)+\gamma \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com