Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 126192 by ajfour last updated on 18/Dec/20

Commented by ajfour last updated on 18/Dec/20

If shape of parabola is same as  that of y=x^2 , find  radius of  the smaller circle.

$${If}\:{shape}\:{of}\:{parabola}\:{is}\:{same}\:{as} \\ $$$${that}\:{of}\:{y}={x}^{\mathrm{2}} ,\:{find}\:\:{radius}\:{of} \\ $$$${the}\:{smaller}\:{circle}. \\ $$

Commented by MJS_new last updated on 19/Dec/20

I get  r_A ≈.196437  r_B ≈.344870  par: y=x^2 +.365017

$$\mathrm{I}\:\mathrm{get} \\ $$$${r}_{{A}} \approx.\mathrm{196437} \\ $$$${r}_{{B}} \approx.\mathrm{344870} \\ $$$$\mathrm{par}:\:{y}={x}^{\mathrm{2}} +.\mathrm{365017} \\ $$

Commented by MJS_new last updated on 19/Dec/20

I corrected my values but they′re still not  the same as yours

$$\mathrm{I}\:\mathrm{corrected}\:\mathrm{my}\:\mathrm{values}\:\mathrm{but}\:\mathrm{they}'\mathrm{re}\:\mathrm{still}\:\mathrm{not} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{yours} \\ $$

Commented by mr W last updated on 19/Dec/20

now they are the same, see update  in my solution.

$${now}\:{they}\:{are}\:{the}\:{same},\:{see}\:{update} \\ $$$${in}\:{my}\:{solution}. \\ $$

Commented by MJS_new last updated on 20/Dec/20

yes.

$$\mathrm{yes}. \\ $$

Answered by mr W last updated on 18/Dec/20

Commented by mr W last updated on 20/Dec/20

y=x^2 +k  P(p,k+p^2 )  tan θ=2p  A(r,r)  p=r−r sin θ  ⇒r sin θ=r−p  p^2 +k=r+r cos θ  ⇒r cos θ=p^2 +k−r  tan θ=((r−p)/(p^2 +k−r))=2p  (r−p)^2 +(p^2 +k−r)^2 =r^2   (r−p)^2 (1+4p^2 )=4r^2 p^2   r^2 −2p(1+4p^2 )r+p^2 (1+4p^2 )=0  ⇒r=r(p)=p(1+4p^2 )+2p^2 (√(1+4p^2 ))   ...(i)  ⇒k=k(p)=((r−p)/(2p))+r−p^2    ...(ii)    Q(q,k+q^2 )  tan ϕ=2q  B(r+2(√(Rr)),R)  q=r+2(√(Rr))−R sin ϕ  ⇒R sin ϕ=r+2(√(Rr))−q  q^2 +k=R+R cos ϕ  ⇒R cos ϕ=q^2 +k−R  tan ϕ=((r+2(√(Rr))−q)/(q^2 +k−R))=2q  r+2(√(Rr))−q=2q(q^2 +k−R)   ...(I)  ⇒q^3 −(R−k−(1/2))q−((r/2)+(√(Rr)))=0  ⇒q=(((√((1/4)((r/2)+(√(Rr)))^2 −(1/(27))(R−k−(1/2))^3 ))+(1/2)((r/2)+(√(Rr)))))^(1/3)        −(((√((1/4)((r/2)+(√(Rr)))^2 −(1/(27))(R−k−(1/2))^3 ))−(1/2)((r/2)+(√(Rr)))))^(1/3)     (r+2(√(Rr))−q)^2 +(q^2 +k−R)^2 =R^2   (1+4q^2 )(q^2 +k−R)^2 =R^2    ...(II)    general case:  for any R we can get p from (I) and  (II), then r & k from (i) and (ii).  Example:  R=10  ⇒p≈0.59646  ⇒r≈2.5528, k≈3.8371    special case AB⊥AC:  tan θ=((R−r)/(2(√(Rr))))=2p  R−4p(√r)(√R)−r=0  (√R)=(2p+(√(1+4p^2 )))(√r)  ⇒R=(2p+(√(1+4p^2 )))^2 r  put this into (I) and (II) and we get  p≈0.1426  ⇒r≈0.1965  ⇒k≈0.3651  ⇒R≈0.3450

$${y}={x}^{\mathrm{2}} +{k} \\ $$$${P}\left({p},{k}+{p}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p} \\ $$$${A}\left({r},{r}\right) \\ $$$${p}={r}−{r}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{r}\:\mathrm{sin}\:\theta={r}−{p} \\ $$$${p}^{\mathrm{2}} +{k}={r}+{r}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{r}\:\mathrm{cos}\:\theta={p}^{\mathrm{2}} +{k}−{r} \\ $$$$\mathrm{tan}\:\theta=\frac{{r}−{p}}{{p}^{\mathrm{2}} +{k}−{r}}=\mathrm{2}{p} \\ $$$$\left({r}−{p}\right)^{\mathrm{2}} +\left({p}^{\mathrm{2}} +{k}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({r}−{p}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} \right)=\mathrm{4}{r}^{\mathrm{2}} {p}^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} −\mathrm{2}{p}\left(\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} \right){r}+{p}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{r}={r}\left({p}\right)={p}\left(\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} \right)+\mathrm{2}{p}^{\mathrm{2}} \sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }\:\:\:...\left({i}\right) \\ $$$$\Rightarrow{k}={k}\left({p}\right)=\frac{{r}−{p}}{\mathrm{2}{p}}+{r}−{p}^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${Q}\left({q},{k}+{q}^{\mathrm{2}} \right) \\ $$$$\mathrm{tan}\:\varphi=\mathrm{2}{q} \\ $$$${B}\left({r}+\mathrm{2}\sqrt{{Rr}},{R}\right) \\ $$$${q}={r}+\mathrm{2}\sqrt{{Rr}}−{R}\:\mathrm{sin}\:\varphi \\ $$$$\Rightarrow{R}\:\mathrm{sin}\:\varphi={r}+\mathrm{2}\sqrt{{Rr}}−{q} \\ $$$${q}^{\mathrm{2}} +{k}={R}+{R}\:\mathrm{cos}\:\varphi \\ $$$$\Rightarrow{R}\:\mathrm{cos}\:\varphi={q}^{\mathrm{2}} +{k}−{R} \\ $$$$\mathrm{tan}\:\varphi=\frac{{r}+\mathrm{2}\sqrt{{Rr}}−{q}}{{q}^{\mathrm{2}} +{k}−{R}}=\mathrm{2}{q} \\ $$$${r}+\mathrm{2}\sqrt{{Rr}}−{q}=\mathrm{2}{q}\left({q}^{\mathrm{2}} +{k}−{R}\right)\:\:\:...\left({I}\right) \\ $$$$\Rightarrow{q}^{\mathrm{3}} −\left({R}−{k}−\frac{\mathrm{1}}{\mathrm{2}}\right){q}−\left(\frac{{r}}{\mathrm{2}}+\sqrt{{Rr}}\right)=\mathrm{0} \\ $$$$\Rightarrow{q}=\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{r}}{\mathrm{2}}+\sqrt{{Rr}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{27}}\left({R}−{k}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{r}}{\mathrm{2}}+\sqrt{{Rr}}\right)} \\ $$$$\:\:\:\:\:−\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{r}}{\mathrm{2}}+\sqrt{{Rr}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{27}}\left({R}−{k}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{r}}{\mathrm{2}}+\sqrt{{Rr}}\right)} \\ $$$$ \\ $$$$\left({r}+\mathrm{2}\sqrt{{Rr}}−{q}\right)^{\mathrm{2}} +\left({q}^{\mathrm{2}} +{k}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} \right)\left({q}^{\mathrm{2}} +{k}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:\:...\left({II}\right) \\ $$$$ \\ $$$$\boldsymbol{{general}}\:\boldsymbol{{case}}: \\ $$$${for}\:{any}\:{R}\:{we}\:{can}\:{get}\:{p}\:{from}\:\left({I}\right)\:{and} \\ $$$$\left({II}\right),\:{then}\:{r}\:\&\:{k}\:{from}\:\left({i}\right)\:{and}\:\left({ii}\right). \\ $$$${Example}: \\ $$$${R}=\mathrm{10} \\ $$$$\Rightarrow{p}\approx\mathrm{0}.\mathrm{59646} \\ $$$$\Rightarrow{r}\approx\mathrm{2}.\mathrm{5528},\:{k}\approx\mathrm{3}.\mathrm{8371} \\ $$$$ \\ $$$$\boldsymbol{{special}}\:\boldsymbol{{case}}\:\boldsymbol{{AB}}\bot\boldsymbol{{AC}}: \\ $$$$\mathrm{tan}\:\theta=\frac{{R}−{r}}{\mathrm{2}\sqrt{{Rr}}}=\mathrm{2}{p} \\ $$$${R}−\mathrm{4}{p}\sqrt{{r}}\sqrt{{R}}−{r}=\mathrm{0} \\ $$$$\sqrt{{R}}=\left(\mathrm{2}{p}+\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }\right)\sqrt{{r}} \\ $$$$\Rightarrow{R}=\left(\mathrm{2}{p}+\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }\right)^{\mathrm{2}} {r} \\ $$$${put}\:{this}\:{into}\:\left({I}\right)\:{and}\:\left({II}\right)\:{and}\:{we}\:{get} \\ $$$${p}\approx\mathrm{0}.\mathrm{1426} \\ $$$$\Rightarrow{r}\approx\mathrm{0}.\mathrm{1965} \\ $$$$\Rightarrow{k}\approx\mathrm{0}.\mathrm{3651} \\ $$$$\Rightarrow{R}\approx\mathrm{0}.\mathrm{3450} \\ $$

Commented by mr W last updated on 20/Dec/20

Commented by mr W last updated on 20/Dec/20

Commented by mr W last updated on 19/Dec/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com