Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 125638 by aurpeyz last updated on 12/Dec/20

Answered by mathmax by abdo last updated on 12/Dec/20

S =(3/3)−(5/5^2 )+(7/5^3 )−(9/5^4 )+...⇒S =1+Σ_(n=1) ^∞ (((−1)^n a_n )/5^(n+1) )  a_n =x n +y    a_1 =5=x+y  and a_2 =7 =2x+y ⇒ { ((x+y=5)),((2x+y=7)) :}  ⇒x=2 ⇒y=3 ⇒a_n =2n+3    we get a_3 =9... ⇒  S =1+Σ_(n=1) ^∞ (−1)^n  ((2n+3)/5^(n+1) )  so the n^(eme)  term is (−1)^n ×((2n+3)/5^(n+1) )

$$\mathrm{S}\:=\frac{\mathrm{3}}{\mathrm{3}}−\frac{\mathrm{5}}{\mathrm{5}^{\mathrm{2}} }+\frac{\mathrm{7}}{\mathrm{5}^{\mathrm{3}} }−\frac{\mathrm{9}}{\mathrm{5}^{\mathrm{4}} }+...\Rightarrow\mathrm{S}\:=\mathrm{1}+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{n}} }{\mathrm{5}^{\mathrm{n}+\mathrm{1}} } \\ $$$$\mathrm{a}_{\mathrm{n}} =\mathrm{x}\:\mathrm{n}\:+\mathrm{y}\:\:\:\:\mathrm{a}_{\mathrm{1}} =\mathrm{5}=\mathrm{x}+\mathrm{y}\:\:\mathrm{and}\:\mathrm{a}_{\mathrm{2}} =\mathrm{7}\:=\mathrm{2x}+\mathrm{y}\:\Rightarrow\begin{cases}{\mathrm{x}+\mathrm{y}=\mathrm{5}}\\{\mathrm{2x}+\mathrm{y}=\mathrm{7}}\end{cases} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{2}\:\Rightarrow\mathrm{y}=\mathrm{3}\:\Rightarrow\mathrm{a}_{\mathrm{n}} =\mathrm{2n}+\mathrm{3}\:\:\:\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}_{\mathrm{3}} =\mathrm{9}...\:\Rightarrow \\ $$$$\mathrm{S}\:=\mathrm{1}+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \:\frac{\mathrm{2n}+\mathrm{3}}{\mathrm{5}^{\mathrm{n}+\mathrm{1}} }\:\:\mathrm{so}\:\mathrm{the}\:\mathrm{n}^{\mathrm{eme}} \:\mathrm{term}\:\mathrm{is}\:\left(−\mathrm{1}\right)^{\mathrm{n}} ×\frac{\mathrm{2n}+\mathrm{3}}{\mathrm{5}^{\mathrm{n}+\mathrm{1}} } \\ $$

Commented by aurpeyz last updated on 13/Dec/20

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com