Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 124988 by bemath last updated on 07/Dec/20

Commented by bemath last updated on 07/Dec/20

x = ((−1±(√(1−4)))/2) = ((−1±i(√3))/2)  x_1  = −(1/2)+((i(√3))/2) ⇒x_1 = cos (((2π)/3))+ isin (((2π)/3))  x_1 ^(2007)  = cos (((4014π)/3))+isin (((4014π)/3))  x_1 ^(−2007)  = cos (((4014π)/3))−isin (((4014π)/3))  x^(2007) +(1/x^(2007) ) = 2cos (((4014π)/3))                            = 2cos (1338π)                            = 2cos (0)                            = 2×(1)=2

$${x}\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}}}{\mathrm{2}}\:=\:\frac{−\mathrm{1}\pm{i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${x}_{\mathrm{1}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\Rightarrow{x}_{\mathrm{1}} =\:\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)+\:{i}\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$$${x}_{\mathrm{1}} ^{\mathrm{2007}} \:=\:\mathrm{cos}\:\left(\frac{\mathrm{4014}\pi}{\mathrm{3}}\right)+{i}\mathrm{sin}\:\left(\frac{\mathrm{4014}\pi}{\mathrm{3}}\right) \\ $$$${x}_{\mathrm{1}} ^{−\mathrm{2007}} \:=\:\mathrm{cos}\:\left(\frac{\mathrm{4014}\pi}{\mathrm{3}}\right)−{i}\mathrm{sin}\:\left(\frac{\mathrm{4014}\pi}{\mathrm{3}}\right) \\ $$$${x}^{\mathrm{2007}} +\frac{\mathrm{1}}{{x}^{\mathrm{2007}} }\:=\:\mathrm{2cos}\:\left(\frac{\mathrm{4014}\pi}{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2cos}\:\left(\mathrm{1338}\pi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2cos}\:\left(\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2}×\left(\mathrm{1}\right)=\mathrm{2} \\ $$

Commented by floor(10²Eta[1]) last updated on 07/Dec/20

desnecessary long result

$$\mathrm{desnecessary}\:\mathrm{long}\:\mathrm{result} \\ $$

Commented by bemath last updated on 08/Dec/20

i like a long thing

$${i}\:{like}\:{a}\:{long}\:{thing}\: \\ $$

Answered by floor(10²Eta[1]) last updated on 07/Dec/20

x^2 =−x−1  x^3 =−x^2 −x=x+1−x=1  x^3 =1  x^(2007) =(x^3 )^(669) =1  x^(2007) +(1/x^(2007) )=1+1=2

$$\mathrm{x}^{\mathrm{2}} =−\mathrm{x}−\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{3}} =−\mathrm{x}^{\mathrm{2}} −\mathrm{x}=\mathrm{x}+\mathrm{1}−\mathrm{x}=\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{3}} =\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{2007}} =\left(\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{669}} =\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{2007}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2007}} }=\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$

Commented by talminator2856791 last updated on 07/Dec/20

 please explain −x^2 −x = x+1−x

$$\:\mathrm{please}\:\mathrm{explain}\:−{x}^{\mathrm{2}} −{x}\:=\:{x}+\mathrm{1}−{x} \\ $$

Commented by floor(10²Eta[1]) last updated on 07/Dec/20

x^2 =−x−1

$$\mathrm{x}^{\mathrm{2}} =−\mathrm{x}−\mathrm{1} \\ $$

Commented by talminator2856791 last updated on 07/Dec/20

 ooooooooooooo wow

$$\:\mathrm{ooooooooooooo}\:\mathrm{wow} \\ $$

Commented by talminator2856791 last updated on 07/Dec/20

 can you please look at my answer for post 124978

$$\:\mathrm{can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{look}\:\mathrm{at}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{for}\:\mathrm{post}\:\mathrm{124978} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com