Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 124291 by bramlexs22 last updated on 02/Dec/20

Answered by liberty last updated on 02/Dec/20

The triangle area satisfies L_Δ = (r/2)(a+b+c)  and we have r = ((2LΔ)/(a+b+c))  so the area of the largest circle that can be  cut from triangle is ((4πL_Δ ^2 )/((a+b+c)^2 ))  where L_Δ = (√(s(s−a)(s−b)(s−c)))   substituting a=10 ; b=18 and c=20  give L_(circle)  = ((π(28)(12)(8))/(4(48)))=14π.

$${The}\:{triangle}\:{area}\:{satisfies}\:{L}_{\Delta} =\:\frac{{r}}{\mathrm{2}}\left({a}+{b}+{c}\right) \\ $$$${and}\:{we}\:{have}\:{r}\:=\:\frac{\mathrm{2}{L}\Delta}{{a}+{b}+{c}} \\ $$$${so}\:{the}\:{area}\:{of}\:{the}\:{largest}\:{circle}\:{that}\:{can}\:{be} \\ $$$${cut}\:{from}\:{triangle}\:{is}\:\frac{\mathrm{4}\pi{L}_{\Delta} ^{\mathrm{2}} }{\left({a}+{b}+{c}\right)^{\mathrm{2}} } \\ $$$${where}\:{L}_{\Delta} =\:\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}\: \\ $$$${substituting}\:{a}=\mathrm{10}\:;\:{b}=\mathrm{18}\:{and}\:{c}=\mathrm{20} \\ $$$${give}\:{L}_{{circle}} \:=\:\frac{\pi\left(\mathrm{28}\right)\left(\mathrm{12}\right)\left(\mathrm{8}\right)}{\mathrm{4}\left(\mathrm{48}\right)}=\mathrm{14}\pi. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com