Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 124116 by danielasebhofoh last updated on 30/Nov/20

Answered by Dwaipayan Shikari last updated on 01/Dec/20

∫x^(−x) dx  =Σ_(n≥0) ^∞ (−1)^n ∫(((xlogx)^n )/(n!))dx  =Σ_(n≥0) ^∞ (−1)^n (1/(n!))∫x^n log^n x d3  =Σ_(n≥0) ^∞ (−1)^n (1/(n!))∫e^((n+1)t) t^n dt       logx=t  =Σ_(n≥0) ^∞ (−1)^n (1/(n!(n+1)^(n+1) ))∫e^u u^n du     (n+1)t=u  =Σ_(n≥0) ^∞ (−1)^n (1/(n!(n+1)^(n+1) ))Σ_(k≥0) ^∞ ∫(u^(n+k) /(k!))du  =Σ_(n≥0) ^∞ (−1)^n (1/(n!(n+1)^(n+1) ))Σ_(k≥0) ^∞ (u^(n+k+1) /(k!(n+k+1)))  =Σ_(n≥0) ^∞ Σ_(k≥0) ^∞ (((−1)^n u^(n+k+1) )/(n!k!(n+1)(n+k+1)))

$$\int{x}^{−{x}} {dx} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \int\frac{\left({xlogx}\right)^{{n}} }{{n}!}{dx} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{{n}!}\int{x}^{{n}} {log}^{{n}} {x}\:{d}\mathrm{3} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} \frac{\mathrm{1}}{\boldsymbol{{n}}!}\int{e}^{\left({n}+\mathrm{1}\right){t}} {t}^{{n}} {dt}\:\:\:\:\:\:\:{logx}={t} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{{n}!\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\int{e}^{{u}} {u}^{{n}} {du}\:\:\:\:\:\left({n}+\mathrm{1}\right){t}={u} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{{n}!\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\int\frac{{u}^{{n}+{k}} }{{k}!}{du} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{{n}!\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{{u}^{{n}+{k}+\mathrm{1}} }{{k}!\left({n}+{k}+\mathrm{1}\right)} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {u}^{{n}+{k}+\mathrm{1}} }{{n}!{k}!\left({n}+\mathrm{1}\right)\left({n}+{k}+\mathrm{1}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com