Question Number 123829 by Algoritm last updated on 28/Nov/20 | ||
![]() | ||
Commented by Algoritm last updated on 28/Nov/20 | ||
![]() | ||
$$\mathrm{prove}\:\mathrm{that}\: \\ $$ | ||
Commented by mr W last updated on 28/Nov/20 | ||
![]() | ||
$${x}=\frac{\mathrm{100}{k}}{\mathrm{99}}\:{with}\:{k}\in\left[\mathrm{0},\mathrm{98}\right] \\ $$ | ||
Answered by Snail last updated on 28/Nov/20 | ||
![]() | ||
$$\frac{{x}}{\mathrm{100}}={x}−\lfloor{x}\rfloor \\ $$$$\lfloor{x}\rfloor=\frac{\mathrm{99}{x}}{\mathrm{100}} \\ $$$${now}\:{let}\:\lfloor{x}\rfloor={m} \\ $$$${x}=\frac{\mathrm{100}{m}}{\mathrm{99}} \\ $$$${where}\:{m}\in\left[\mathrm{0},\mathrm{98}\right]\:\:\:{because}\:{of}\:\mathrm{0}\leqslant\left\{{x}\right\}<\mathrm{1} \\ $$ | ||