Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 123575 by bramlexs22 last updated on 26/Nov/20

Commented by liberty last updated on 26/Nov/20

(i) grad normal a circle at point   P(a,(√(4−a^2  ))) is m_1 = ((√(4−a^2 ))/a) then   eq of normal line ⇒y=((√(4−a^2 ))/a)(x−a)+(√(4−a^2 ))  (ii) grad normal a parabola at point  Q(b,1+(b−5)^2 ) is m_2 = −(1/(2b−10))  and eq of normal line is ⇒y=−(((x−b))/(2b−10))+1+(b−5)^2   Thus the line is same. we get    { ((((√(4−a^2 ))/a) = (1/(10−2b)))),((0 = (b/(2b−10))+1+(b−5)^2 )) :}  ⇒ ((3b−10)/(2b−10))+(b−5)^2  = 0  ⇒2b^3 −30b^2 +153b−260=0  (b−4)(2b^2 −22b+65)=0 . this only  b=4∈R so we have (1/(10−8)) = ((√(4−a^2 ))/a)  ⇒(a^2 /4) = 4−a^2  ; a=± (4/( (√5)))   The shortest distance we get from   relation d_(min)  = OQ−Radius  OQ =(√(4^2 +2^2 )) = 2(√5) . Hence   d_(min)  = 2(√5)−2. ▲

$$\left({i}\right)\:{grad}\:{normal}\:{a}\:{circle}\:{at}\:{point}\: \\ $$$${P}\left({a},\sqrt{\mathrm{4}−{a}^{\mathrm{2}} \:}\right)\:{is}\:{m}_{\mathrm{1}} =\:\frac{\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}{{a}}\:{then}\: \\ $$$${eq}\:{of}\:{normal}\:{line}\:\Rightarrow{y}=\frac{\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}{{a}}\left({x}−{a}\right)+\sqrt{\mathrm{4}−{a}^{\mathrm{2}} } \\ $$$$\left({ii}\right)\:{grad}\:{normal}\:{a}\:{parabola}\:{at}\:{point} \\ $$$${Q}\left({b},\mathrm{1}+\left({b}−\mathrm{5}\right)^{\mathrm{2}} \right)\:{is}\:{m}_{\mathrm{2}} =\:−\frac{\mathrm{1}}{\mathrm{2}{b}−\mathrm{10}} \\ $$$${and}\:{eq}\:{of}\:{normal}\:{line}\:{is}\:\Rightarrow{y}=−\frac{\left({x}−{b}\right)}{\mathrm{2}{b}−\mathrm{10}}+\mathrm{1}+\left({b}−\mathrm{5}\right)^{\mathrm{2}} \\ $$$${Thus}\:{the}\:{line}\:{is}\:{same}.\:{we}\:{get}\: \\ $$$$\begin{cases}{\frac{\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}{{a}}\:=\:\frac{\mathrm{1}}{\mathrm{10}−\mathrm{2}{b}}}\\{\mathrm{0}\:=\:\frac{{b}}{\mathrm{2}{b}−\mathrm{10}}+\mathrm{1}+\left({b}−\mathrm{5}\right)^{\mathrm{2}} }\end{cases} \\ $$$$\Rightarrow\:\frac{\mathrm{3}{b}−\mathrm{10}}{\mathrm{2}{b}−\mathrm{10}}+\left({b}−\mathrm{5}\right)^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{b}^{\mathrm{3}} −\mathrm{30}{b}^{\mathrm{2}} +\mathrm{153}{b}−\mathrm{260}=\mathrm{0} \\ $$$$\left({b}−\mathrm{4}\right)\left(\mathrm{2}{b}^{\mathrm{2}} −\mathrm{22}{b}+\mathrm{65}\right)=\mathrm{0}\:.\:{this}\:{only} \\ $$$${b}=\mathrm{4}\in\mathbb{R}\:{so}\:{we}\:{have}\:\frac{\mathrm{1}}{\mathrm{10}−\mathrm{8}}\:=\:\frac{\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}{{a}} \\ $$$$\Rightarrow\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{4}−{a}^{\mathrm{2}} \:;\:{a}=\pm\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{5}}}\: \\ $$$${The}\:{shortest}\:{distance}\:{we}\:{get}\:{from}\: \\ $$$${relation}\:{d}_{{min}} \:=\:{OQ}−{Radius} \\ $$$${OQ}\:=\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:=\:\mathrm{2}\sqrt{\mathrm{5}}\:.\:{Hence}\: \\ $$$${d}_{{min}} \:=\:\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}.\:\blacktriangle \\ $$

Answered by MJS_new last updated on 26/Nov/20

we need the point of the parabola with the  shortest distance to the center of the circle.  the center of the circle is  ((0),(0) ) , its radius is 2  the points of the parabola are  ((x),(((x−5)^2 +1)) )  ⇒  the square of the distance to  ((0),(0) ) is  (x)^2 +((x−5)^2 +1)^2 =  =x^4 −20x^3 +153x^2 −520x+676  (d/dx)[x^4 −20x^3 +153x^2 −520x+676]=0  4x^3 −60x^2 +306x−520=0  ⇒ x=4  ⇒ distance is 2(√5) to the origin and 2(√5)−2  to the line of the circle  answer 2(√5)−2

$$\mathrm{we}\:\mathrm{need}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{shortest}\:\mathrm{distance}\:\mathrm{to}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}. \\ $$$$\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:,\:\mathrm{its}\:\mathrm{radius}\:\mathrm{is}\:\mathrm{2} \\ $$$$\mathrm{the}\:\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parabola}\:\mathrm{are}\:\begin{pmatrix}{{x}}\\{\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\mathrm{1}}\end{pmatrix} \\ $$$$\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{square}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{to}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\mathrm{is} \\ $$$$\left({x}\right)^{\mathrm{2}} +\left(\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} = \\ $$$$={x}^{\mathrm{4}} −\mathrm{20}{x}^{\mathrm{3}} +\mathrm{153}{x}^{\mathrm{2}} −\mathrm{520}{x}+\mathrm{676} \\ $$$$\frac{{d}}{{dx}}\left[{x}^{\mathrm{4}} −\mathrm{20}{x}^{\mathrm{3}} +\mathrm{153}{x}^{\mathrm{2}} −\mathrm{520}{x}+\mathrm{676}\right]=\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{3}} −\mathrm{60}{x}^{\mathrm{2}} +\mathrm{306}{x}−\mathrm{520}=\mathrm{0} \\ $$$$\Rightarrow\:{x}=\mathrm{4} \\ $$$$\Rightarrow\:\mathrm{distance}\:\mathrm{is}\:\mathrm{2}\sqrt{\mathrm{5}}\:\mathrm{to}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{and}\:\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{answer}\:\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com