Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 123027 by Lekhraj last updated on 21/Nov/20

Commented by kolos last updated on 24/Nov/20

dude , how did you post a figure?

$${dude}\:,\:{how}\:{did}\:{you}\:{post}\:{a}\:{figure}?\: \\ $$

Answered by TANMAY PANACEA last updated on 21/Nov/20

AC=y  BC=x  (AC)^2 +(BC)^2 =(AB)^2   angle <ABC=θ  AB=hypotsneous  AC=perpendicular   BC=base  tanθ=((AC)/(BC))     tan(90−θ)=((BC)/(AC))  sinθ=((CD)/(BC))    sin(90−θ)=((CD)/(AC))  sin^2 θ+cos^2 θ=1  ((CD^2 )/(BC^2 ))+((CD^2 )/(AC^2 ))=1  (1/(BC^2 ))+(1/(AC^2 ))=(1/(CD^2 ))

$${AC}={y} \\ $$$${BC}={x} \\ $$$$\left({AC}\right)^{\mathrm{2}} +\left({BC}\right)^{\mathrm{2}} =\left({AB}\right)^{\mathrm{2}} \\ $$$${angle}\:<{ABC}=\theta\:\:{AB}={hypotsneous} \\ $$$${AC}={perpendicular}\:\:\:{BC}={base} \\ $$$${tan}\theta=\frac{{AC}}{{BC}}\:\:\:\:\:{tan}\left(\mathrm{90}−\theta\right)=\frac{{BC}}{{AC}} \\ $$$${sin}\theta=\frac{{CD}}{{BC}}\:\:\:\:{sin}\left(\mathrm{90}−\theta\right)=\frac{{CD}}{{AC}} \\ $$$${sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta=\mathrm{1} \\ $$$$\frac{{CD}^{\mathrm{2}} }{{BC}^{\mathrm{2}} }+\frac{{CD}^{\mathrm{2}} }{{AC}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{BC}^{\mathrm{2}} }+\frac{\mathrm{1}}{{AC}^{\mathrm{2}} }=\frac{\mathrm{1}}{{CD}^{\mathrm{2}} } \\ $$$$ \\ $$

Answered by Olaf last updated on 21/Nov/20

Area = (1/2)AC×BC = (1/2)AB×CD  ⇒ CD^2  = ((AC^2 ×BC^2 )/(AB^2 )) (1)  and Pythagore : AC^2 +BC^2  = AB^2   (1) : (1/(CD^2 )) = ((AC^2 +BC^2 )/(AC^2 ×BC^2 )) = (1/(BC^2 ))+(1/(AC^2 ))  (Descartes formula)

$$\mathrm{Area}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{AC}×{BC}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{AB}×{CD} \\ $$$$\Rightarrow\:{CD}^{\mathrm{2}} \:=\:\frac{{AC}^{\mathrm{2}} ×{BC}^{\mathrm{2}} }{{AB}^{\mathrm{2}} }\:\left(\mathrm{1}\right) \\ $$$$\mathrm{and}\:\mathrm{Pythagore}\::\:{AC}^{\mathrm{2}} +{BC}^{\mathrm{2}} \:=\:{AB}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)\::\:\frac{\mathrm{1}}{{CD}^{\mathrm{2}} }\:=\:\frac{{AC}^{\mathrm{2}} +{BC}^{\mathrm{2}} }{{AC}^{\mathrm{2}} ×{BC}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{{BC}^{\mathrm{2}} }+\frac{\mathrm{1}}{{AC}^{\mathrm{2}} } \\ $$$$\left(\mathrm{Descartes}\:\mathrm{formula}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com