Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122919 by bemath last updated on 20/Nov/20

Answered by Dwaipayan Shikari last updated on 20/Nov/20

∫_0 ^(1/2) ((xe^(2x) )/((1+2x)^2 ))dx  =(1/4)∫_0 ^1 ((ue^u )/((1+u)^2 ))du  =(1/4)∫_0 ^1 (e^u /((u+1)))−(e^u /((u+1)^2 ))  =(1/4)[(e^u /(u+1))]_0 ^1 =(1/4)((e/2)−1)=(1/8)(e−2)

$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{xe}^{\mathrm{2}{x}} }{\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ue}^{{u}} }{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} }{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{{u}} }{\left({u}+\mathrm{1}\right)}−\frac{{e}^{{u}} }{\left({u}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{{e}^{{u}} }{{u}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{e}}{\mathrm{2}}−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{8}}\left({e}−\mathrm{2}\right) \\ $$

Answered by liberty last updated on 20/Nov/20

let 1+2x = u ⇒x=((u−1)/2) ∧ dx = (1/2)du  φ = ∫ (((((u−1)/2))e^(u−1) )/u^2 ) (1/2)du = (1/4)∫ (((u−1)e^(u−1) )/u^2 )du  φ = (1/(4e)) ∫ (((u−1)e^u )/u^2 ) du = (1/(4e))[∫ ((u.e^u −e^u )/u^2 ) du]  φ = (1/(4e))∫ d((e^u /u)) = (1/(4e))((e^u /u))=(e^(u−1) /(4u))  put border  { ((u=2)),((u=1)) :}  give φ = (1/4) [(e^(u−1) /u) ]_1 ^2 = (1/4)((e/2)−1).

$${let}\:\mathrm{1}+\mathrm{2}{x}\:=\:{u}\:\Rightarrow{x}=\frac{{u}−\mathrm{1}}{\mathrm{2}}\:\wedge\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{du} \\ $$$$\phi\:=\:\int\:\frac{\left(\frac{{u}−\mathrm{1}}{\mathrm{2}}\right){e}^{{u}−\mathrm{1}} }{{u}^{\mathrm{2}} }\:\frac{\mathrm{1}}{\mathrm{2}}{du}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int\:\frac{\left({u}−\mathrm{1}\right){e}^{{u}−\mathrm{1}} }{{u}^{\mathrm{2}} }{du} \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{4}{e}}\:\int\:\frac{\left({u}−\mathrm{1}\right){e}^{{u}} }{{u}^{\mathrm{2}} }\:{du}\:=\:\frac{\mathrm{1}}{\mathrm{4}{e}}\left[\int\:\frac{{u}.{e}^{{u}} −{e}^{{u}} }{{u}^{\mathrm{2}} }\:{du}\right] \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{4}{e}}\int\:{d}\left(\frac{{e}^{{u}} }{{u}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}{e}}\left(\frac{{e}^{{u}} }{{u}}\right)=\frac{{e}^{{u}−\mathrm{1}} }{\mathrm{4}{u}} \\ $$$${put}\:{border}\:\begin{cases}{{u}=\mathrm{2}}\\{{u}=\mathrm{1}}\end{cases} \\ $$$${give}\:\phi\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\left[\frac{{e}^{{u}−\mathrm{1}} }{{u}}\:\right]_{\mathrm{1}} ^{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{e}}{\mathrm{2}}−\mathrm{1}\right).\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com