Previous in Relation and Functions Next in Relation and Functions | ||
Question Number 122788 by 676597498 last updated on 19/Nov/20 | ||
Answered by mr W last updated on 20/Nov/20 | ||
$$\mathrm{0}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1000}}<\mathrm{1}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1000}}\right]=\mathrm{0} \\ $$$$... \\ $$$$\mathrm{0}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{499}}{\mathrm{1000}}<\mathrm{1}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{499}}{\mathrm{1000}}\right]=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{500}}{\mathrm{1000}}=\mathrm{1}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{500}}{\mathrm{1000}}\right]=\mathrm{1} \\ $$$$\mathrm{1}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{501}}{\mathrm{1000}}<\mathrm{2}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{501}}{\mathrm{1000}}\right]=\mathrm{1} \\ $$$$... \\ $$$$\mathrm{1}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{999}}{\mathrm{1000}}<\mathrm{2}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{999}}{\mathrm{1000}}\right]=\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow{sum}=\mathrm{999}−\mathrm{499}=\mathrm{500} \\ $$ | ||