Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122626 by rs4089 last updated on 18/Nov/20

Answered by Dwaipayan Shikari last updated on 18/Nov/20

S=1−1+1−1+1−1+...=(1/(1+1))=(1/2)  But actually sum does not exist  ζ(1−s)=2^(1−s) π^(−s) cos(((πs)/2))Γ(s)ζ(s)  ζ(−1)=−(1/(2π^2 ))Γ(2)ζ(2)=−(1/(12))   (strange enough)  ζ(−1)=1+2+3+4+5+6+7+....

$${S}=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+...=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${But}\:{actually}\:{sum}\:{does}\:{not}\:{exist} \\ $$$$\zeta\left(\mathrm{1}−{s}\right)=\mathrm{2}^{\mathrm{1}−{s}} \pi^{−{s}} {cos}\left(\frac{\pi{s}}{\mathrm{2}}\right)\Gamma\left({s}\right)\zeta\left({s}\right) \\ $$$$\zeta\left(−\mathrm{1}\right)=−\frac{\mathrm{1}}{\mathrm{2}\pi^{\mathrm{2}} }\Gamma\left(\mathrm{2}\right)\zeta\left(\mathrm{2}\right)=−\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\left({strange}\:{enough}\right) \\ $$$$\zeta\left(−\mathrm{1}\right)=\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+.... \\ $$

Answered by mathmax by abdo last updated on 18/Nov/20

=Σ_(n=0) ^∞ (−1)^n  =1−1+1−1+....=(1/2)

$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \:=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+....=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com