Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122572 by rs4089 last updated on 18/Nov/20

Answered by Olaf last updated on 18/Nov/20

With Euler′s Gamma function Γ :  ∫_0 ^∞ e^(−x) lnxdx = Γ′(1) = −γ  where γ is the Euler−Mascheroni  constant : γ ≈ 0.5772156649

$$\mathrm{With}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{Gamma}\:\mathrm{function}\:\Gamma\:: \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \mathrm{ln}{xdx}\:=\:\Gamma'\left(\mathrm{1}\right)\:=\:−\gamma \\ $$$$\mathrm{where}\:\gamma\:\mathrm{is}\:\mathrm{the}\:\mathrm{Euler}−\mathrm{Mascheroni} \\ $$$$\mathrm{constant}\::\:\gamma\:\approx\:\mathrm{0}.\mathrm{5772156649} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com