Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 122443 by ajfour last updated on 17/Nov/20

Commented by ajfour last updated on 17/Nov/20

Find ((r/R))_(max) .

$${Find}\:\left(\frac{{r}}{{R}}\right)_{{max}} . \\ $$

Answered by ajfour last updated on 17/Nov/20

let left corner angle of △ be  θ.  2Rcos θ=p+q  height h=2Rcos θsin θ=p+r  base  b=2Rcos^2 θ=q+r  ⇒   2Rcos θ=2Rcos θsin θ−r                               +2Rcos^2 θ−r  ⇒  (r/R)=cos θsin θ−cos θ+cos^2 θ              =cos θ(cos θ+sin θ−1)        (d/dθ)((r/R))=−sin^2 θ+cos^2 θ+sin θ                            −2cos θsin θ = 0  let  cos θ=t        ⇒  (1−t^2 )(1−2t)^2 =(1−2t^2 )^2   ⇒  (1−t^2 )(4t^2 −4t+1)=(4t^4 −4t^2 +1)  ⇒  8t^4 −4t^3 −7t^2 +4t=0  ⇒   t=0  is not appropriate  ⇒  t^3 −(t^2 /2)−((7t)/8)+(1/2)=0  positive values of t are   t ≈ 0.63111  ,  0.82694_(−)   correspinding values of     ((r/R))=t(t+(√(1−t^2 ))−1)  are  ≈ 0.25674 , 0.32187_(−)            ((r/R))_(max) ≈ 0.32187    θ_0 ≈ cos^(−1) (0.82694) ≈ 34.21432°

$${let}\:{left}\:{corner}\:{angle}\:{of}\:\bigtriangleup\:{be}\:\:\theta. \\ $$$$\mathrm{2}{R}\mathrm{cos}\:\theta={p}+{q} \\ $$$${height}\:{h}=\mathrm{2}{R}\mathrm{cos}\:\theta\mathrm{sin}\:\theta={p}+{r} \\ $$$${base}\:\:{b}=\mathrm{2}{R}\mathrm{cos}\:^{\mathrm{2}} \theta={q}+{r} \\ $$$$\Rightarrow\:\:\:\mathrm{2}{R}\mathrm{cos}\:\theta=\mathrm{2}{R}\mathrm{cos}\:\theta\mathrm{sin}\:\theta−{r} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}{R}\mathrm{cos}\:^{\mathrm{2}} \theta−{r} \\ $$$$\Rightarrow\:\:\frac{{r}}{{R}}=\mathrm{cos}\:\theta\mathrm{sin}\:\theta−\mathrm{cos}\:\theta+\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{cos}\:\theta\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta−\mathrm{1}\right)\:\:\:\: \\ $$$$\:\:\frac{{d}}{{d}\theta}\left(\frac{{r}}{{R}}\right)=−\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2cos}\:\theta\mathrm{sin}\:\theta\:=\:\mathrm{0} \\ $$$${let}\:\:\mathrm{cos}\:\theta={t}\:\:\: \\ $$$$\:\:\:\Rightarrow\:\:\left(\mathrm{1}−{t}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{2}{t}\right)^{\mathrm{2}} =\left(\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left(\mathrm{1}−{t}^{\mathrm{2}} \right)\left(\mathrm{4}{t}^{\mathrm{2}} −\mathrm{4}{t}+\mathrm{1}\right)=\left(\mathrm{4}{t}^{\mathrm{4}} −\mathrm{4}{t}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\Rightarrow\:\:\mathrm{8}{t}^{\mathrm{4}} −\mathrm{4}{t}^{\mathrm{3}} −\mathrm{7}{t}^{\mathrm{2}} +\mathrm{4}{t}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{t}=\mathrm{0}\:\:{is}\:{not}\:{appropriate} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{3}} −\frac{{t}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{7}{t}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$${positive}\:{values}\:{of}\:{t}\:{are} \\ $$$$\:{t}\:\approx\:\mathrm{0}.\mathrm{63111}\:\:,\:\:\underset{−} {\mathrm{0}.\mathrm{82694}} \\ $$$${correspinding}\:{values}\:{of} \\ $$$$\:\:\:\left(\frac{{r}}{{R}}\right)={t}\left({t}+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }−\mathrm{1}\right) \\ $$$${are}\:\:\approx\:\mathrm{0}.\mathrm{25674}\:,\:\underset{−} {\mathrm{0}.\mathrm{32187}} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\frac{{r}}{{R}}\right)_{{max}} \approx\:\mathrm{0}.\mathrm{32187} \\ $$$$\:\:\theta_{\mathrm{0}} \approx\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{0}.\mathrm{82694}\right)\:\approx\:\mathrm{34}.\mathrm{21432}° \\ $$

Commented by ajfour last updated on 17/Nov/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com