Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122047 by help last updated on 13/Nov/20

Answered by TANMAY PANACEA last updated on 13/Nov/20

5x+4y=12  (x/(2.4))+(y/3)=1  line l and m intersect at point m(2,(1/2))  eqn of line m (y−0.5)=(tanθ)(x−2)  (y−(1/2))=(tanθ)(x−2)  y=(tanθ)x−2tanθ+(1/2)  here option be is satisfied by (2,(1/2))  2y=3−x

$$\mathrm{5}{x}+\mathrm{4}{y}=\mathrm{12} \\ $$$$\frac{{x}}{\mathrm{2}.\mathrm{4}}+\frac{{y}}{\mathrm{3}}=\mathrm{1} \\ $$$${line}\:{l}\:{and}\:{m}\:{intersect}\:{at}\:{point}\:{m}\left(\mathrm{2},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${eqn}\:{of}\:{line}\:{m}\:\left({y}−\mathrm{0}.\mathrm{5}\right)=\left({tan}\theta\right)\left({x}−\mathrm{2}\right) \\ $$$$\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\left({tan}\theta\right)\left({x}−\mathrm{2}\right) \\ $$$${y}=\left({tan}\theta\right){x}−\mathrm{2}{tan}\theta+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${here}\:{option}\:{be}\:{is}\:{satisfied}\:{by}\:\left(\mathrm{2},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{2}{y}=\mathrm{3}−{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com