Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 121677 by TITA last updated on 10/Nov/20

Commented by TITA last updated on 10/Nov/20

please help

$${please}\:{help} \\ $$

Answered by MJS_new last updated on 11/Nov/20

1)  n!=1×2×3×4×5×...×n  ⇒ all primes ≤n divide n!  ⇔ for any given prime p≤n we have n!=k_p ×p         with k_p ∈N  ⇒ n!+1=k_p ×p+1 which cannot be divisible       by p for any p≤n  ⇒ if n is prime ⇒ n!+1 is not divisible by n       nor any other p≤n ⇒ there is at least one       prime>n

$$\left.\mathrm{1}\right) \\ $$$${n}!=\mathrm{1}×\mathrm{2}×\mathrm{3}×\mathrm{4}×\mathrm{5}×...×{n} \\ $$$$\Rightarrow\:\mathrm{all}\:\mathrm{primes}\:\leqslant{n}\:\mathrm{divide}\:{n}! \\ $$$$\Leftrightarrow\:\mathrm{for}\:\mathrm{any}\:\mathrm{given}\:\mathrm{prime}\:{p}\leqslant{n}\:\mathrm{we}\:\mathrm{have}\:{n}!={k}_{{p}} ×{p} \\ $$$$\:\:\:\:\:\:\:\mathrm{with}\:{k}_{{p}} \in\mathbb{N} \\ $$$$\Rightarrow\:{n}!+\mathrm{1}={k}_{{p}} ×{p}+\mathrm{1}\:\mathrm{which}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{divisible} \\ $$$$\:\:\:\:\:\mathrm{by}\:{p}\:\mathrm{for}\:\mathrm{any}\:{p}\leqslant{n} \\ $$$$\Rightarrow\:\mathrm{if}\:{n}\:\mathrm{is}\:\mathrm{prime}\:\Rightarrow\:{n}!+\mathrm{1}\:\mathrm{is}\:\mathrm{not}\:\mathrm{divisible}\:\mathrm{by}\:{n} \\ $$$$\:\:\:\:\:\mathrm{nor}\:\mathrm{any}\:\mathrm{other}\:{p}\leqslant{n}\:\Rightarrow\:\mathrm{there}\:\mathrm{is}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one} \\ $$$$\:\:\:\:\:\mathrm{prime}>{n} \\ $$

Answered by MJS_new last updated on 11/Nov/20

2)  n=p×q with p prime and q∈N  3 cases  1. if q=p ⇒ n=p^2  and p=(√n)  2. if q<p ⇒ q<(√n) and p>(√n) and q is either  prime or has factors, anyway we have a  prime <(√n)  3. if q>p ⇒ q>(√n) and p<(√n)

$$\left.\mathrm{2}\right) \\ $$$${n}={p}×{q}\:\mathrm{with}\:{p}\:\mathrm{prime}\:\mathrm{and}\:{q}\in\mathbb{N} \\ $$$$\mathrm{3}\:\mathrm{cases} \\ $$$$\mathrm{1}.\:\mathrm{if}\:{q}={p}\:\Rightarrow\:{n}={p}^{\mathrm{2}} \:\mathrm{and}\:{p}=\sqrt{{n}} \\ $$$$\mathrm{2}.\:\mathrm{if}\:{q}<{p}\:\Rightarrow\:{q}<\sqrt{{n}}\:\mathrm{and}\:{p}>\sqrt{{n}}\:\mathrm{and}\:{q}\:\mathrm{is}\:\mathrm{either} \\ $$$$\mathrm{prime}\:\mathrm{or}\:\mathrm{has}\:\mathrm{factors},\:\mathrm{anyway}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a} \\ $$$$\mathrm{prime}\:<\sqrt{{n}} \\ $$$$\mathrm{3}.\:\mathrm{if}\:{q}>{p}\:\Rightarrow\:{q}>\sqrt{{n}}\:\mathrm{and}\:{p}<\sqrt{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com