Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 121553 by I want to learn more last updated on 09/Nov/20

Commented by I want to learn more last updated on 09/Nov/20

Area of shaded

$$\mathrm{Area}\:\mathrm{of}\:\mathrm{shaded} \\ $$

Answered by TANMAY PANACEA last updated on 09/Nov/20

Let A(0,0)  B(2,0) D(0,1)  C(2,1)  eqn AB=x axis  AD=yaxis  centre small circle(1,k) radius=r  k+r=1  (1−0)^2 +(k−0)^2 =(1+r)^2  [distance between  centre A and centre of small circle]  1+(1−r)^2 =1+2r+r^2   1+1−2r+r^2 =1+2r+r^2   4r=1→r=(1/4)  shaded area.  2×1−2×(1/4)×π1^2 −π×((1/4))^2   =2−(π/2)−(π/(16))=  =((32−8π−π)/(16))=((32−9π)/(16))

$${Let}\:{A}\left(\mathrm{0},\mathrm{0}\right)\:\:{B}\left(\mathrm{2},\mathrm{0}\right)\:{D}\left(\mathrm{0},\mathrm{1}\right)\:\:{C}\left(\mathrm{2},\mathrm{1}\right) \\ $$$${eqn}\:{AB}={x}\:{axis}\:\:{AD}={yaxis} \\ $$$${centre}\:{small}\:{circle}\left(\mathrm{1},{k}\right)\:{radius}={r} \\ $$$${k}+{r}=\mathrm{1} \\ $$$$\left(\mathrm{1}−\mathrm{0}\right)^{\mathrm{2}} +\left({k}−\mathrm{0}\right)^{\mathrm{2}} =\left(\mathrm{1}+{r}\right)^{\mathrm{2}} \:\left[{distance}\:{between}\right. \\ $$$$\left.{centre}\:{A}\:{and}\:{centre}\:{of}\:{small}\:{circle}\right] \\ $$$$\mathrm{1}+\left(\mathrm{1}−{r}\right)^{\mathrm{2}} =\mathrm{1}+\mathrm{2}{r}+{r}^{\mathrm{2}} \\ $$$$\mathrm{1}+\mathrm{1}−\mathrm{2}{r}+{r}^{\mathrm{2}} =\mathrm{1}+\mathrm{2}{r}+{r}^{\mathrm{2}} \\ $$$$\mathrm{4}{r}=\mathrm{1}\rightarrow{r}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\boldsymbol{{shaded}}\:\boldsymbol{{area}}. \\ $$$$\mathrm{2}×\mathrm{1}−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}×\pi\mathrm{1}^{\mathrm{2}} −\pi×\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}−\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{16}}= \\ $$$$=\frac{\mathrm{32}−\mathrm{8}\pi−\pi}{\mathrm{16}}=\frac{\mathrm{32}−\mathrm{9}\pi}{\mathrm{16}} \\ $$$$ \\ $$

Commented by I want to learn more last updated on 09/Nov/20

Thanks sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Commented by TANMAY PANACEA last updated on 09/Nov/20

most welcome

$${most}\:{welcome} \\ $$

Answered by mr W last updated on 09/Nov/20

R=1  (R+r)^2 =R^2 +(R−r)^2   4r=R  r=(R/4)  shaded=2R×R−((πR^2 )/2)−πr^2   =(((32−9π)/(16)))R^2 =((32−9π)/(16))=0.233

$${R}=\mathrm{1} \\ $$$$\left({R}+{r}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} +\left({R}−{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{r}={R} \\ $$$${r}=\frac{{R}}{\mathrm{4}} \\ $$$${shaded}=\mathrm{2}{R}×{R}−\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}−\pi{r}^{\mathrm{2}} \\ $$$$=\left(\frac{\mathrm{32}−\mathrm{9}\pi}{\mathrm{16}}\right){R}^{\mathrm{2}} =\frac{\mathrm{32}−\mathrm{9}\pi}{\mathrm{16}}=\mathrm{0}.\mathrm{233} \\ $$

Commented by I want to learn more last updated on 10/Nov/20

I appreciate sir

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$

Commented by I want to learn more last updated on 10/Nov/20

Sir, help me solve the permutation    Q 121552

$$\mathrm{Sir},\:\mathrm{help}\:\mathrm{me}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{permutation}\:\:\:\:\mathrm{Q}\:\mathrm{121552} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com