Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120920 by Khalmohmmad last updated on 04/Nov/20

Answered by MJS_new last updated on 04/Nov/20

20^(111)     0 because k=0 ⇒ k^2 +k=0 and we′re multiplying    2^(49) d^(49) =562949953421312d^(49)     Π_(r=a) ^b (2r+2k)=2^(b−a+1) ×(((k+a)(k+b)!)/((k+a)!))  for a<0 we get some x! with x∈Z^−  and both  faculty and Γ(x) are not defined for x∈Z^−

$$\mathrm{20}^{\mathrm{111}} \\ $$$$ \\ $$$$\mathrm{0}\:\mathrm{because}\:{k}=\mathrm{0}\:\Rightarrow\:{k}^{\mathrm{2}} +{k}=\mathrm{0}\:\mathrm{and}\:\mathrm{we}'\mathrm{re}\:\mathrm{multiplying} \\ $$$$ \\ $$$$\mathrm{2}^{\mathrm{49}} {d}^{\mathrm{49}} =\mathrm{562949953421312}{d}^{\mathrm{49}} \\ $$$$ \\ $$$$\underset{{r}={a}} {\overset{{b}} {\prod}}\left(\mathrm{2}{r}+\mathrm{2}{k}\right)=\mathrm{2}^{{b}−{a}+\mathrm{1}} ×\frac{\left({k}+{a}\right)\left({k}+{b}\right)!}{\left({k}+{a}\right)!} \\ $$$$\mathrm{for}\:{a}<\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{some}\:{x}!\:\mathrm{with}\:{x}\in\mathbb{Z}^{−} \:\mathrm{and}\:\mathrm{both} \\ $$$$\mathrm{faculty}\:\mathrm{and}\:\Gamma\left({x}\right)\:\mathrm{are}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}\in\mathbb{Z}^{−} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com