Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 120431 by john santu last updated on 31/Oct/20

Commented by john santu last updated on 31/Oct/20

old unswered question

$${old}\:{unswered}\:{question} \\ $$

Commented by mr W last updated on 31/Oct/20

question is not quite clear for me.  according to my understanding a  memorable number is e.g.  123−1234 or 123−4123.  so my answer is  2×C_3 ^(10) ×3!×7=10080

$${question}\:{is}\:{not}\:{quite}\:{clear}\:{for}\:{me}. \\ $$$${according}\:{to}\:{my}\:{understanding}\:{a} \\ $$$${memorable}\:{number}\:{is}\:{e}.{g}. \\ $$$$\mathrm{123}−\mathrm{1234}\:{or}\:\mathrm{123}−\mathrm{4123}. \\ $$$${so}\:{my}\:{answer}\:{is} \\ $$$$\mathrm{2}×{C}_{\mathrm{3}} ^{\mathrm{10}} ×\mathrm{3}!×\mathrm{7}=\mathrm{10080} \\ $$

Answered by john santu last updated on 31/Oct/20

Let A denote the set of telephone numbers  for which d_1 d_2 d_3  is the same as d_4 d_5 d_6   and let B the set of telephone numbers   for which d_1 d_2 d_3  concides with d_5 d_6 d_7 .  A telephone number d_1 d_2 d_3 −d_4 d_5 d_6 d_7   belong to A∩B if only if d_1 =d_2 =d_3 =d_4 =...=d_7 .  Hence n(A∩B)=10. Thus by Inclusion−Exclusion Principle  n(A∪B)=n(A)+n(B)−n(A∩B)                      = 10^3 .1.10 + 10^3 .10.1−10                      = 20,000−10=19,990

$${Let}\:{A}\:{denote}\:{the}\:{set}\:{of}\:{telephone}\:{numbers} \\ $$$${for}\:{which}\:{d}_{\mathrm{1}} {d}_{\mathrm{2}} {d}_{\mathrm{3}} \:{is}\:{the}\:{same}\:{as}\:{d}_{\mathrm{4}} {d}_{\mathrm{5}} {d}_{\mathrm{6}} \\ $$$${and}\:{let}\:{B}\:{the}\:{set}\:{of}\:{telephone}\:{numbers}\: \\ $$$${for}\:{which}\:{d}_{\mathrm{1}} {d}_{\mathrm{2}} {d}_{\mathrm{3}} \:{concides}\:{with}\:{d}_{\mathrm{5}} {d}_{\mathrm{6}} {d}_{\mathrm{7}} . \\ $$$${A}\:{telephone}\:{number}\:{d}_{\mathrm{1}} {d}_{\mathrm{2}} {d}_{\mathrm{3}} −{d}_{\mathrm{4}} {d}_{\mathrm{5}} {d}_{\mathrm{6}} {d}_{\mathrm{7}} \\ $$$${belong}\:{to}\:{A}\cap{B}\:{if}\:{only}\:{if}\:{d}_{\mathrm{1}} ={d}_{\mathrm{2}} ={d}_{\mathrm{3}} ={d}_{\mathrm{4}} =...={d}_{\mathrm{7}} . \\ $$$${Hence}\:{n}\left({A}\cap{B}\right)=\mathrm{10}.\:{Thus}\:{by}\:{Inclusion}−{Exclusion}\:{Principle} \\ $$$${n}\left({A}\cup{B}\right)={n}\left({A}\right)+{n}\left({B}\right)−{n}\left({A}\cap{B}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{10}^{\mathrm{3}} .\mathrm{1}.\mathrm{10}\:+\:\mathrm{10}^{\mathrm{3}} .\mathrm{10}.\mathrm{1}−\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{20},\mathrm{000}−\mathrm{10}=\mathrm{19},\mathrm{990} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com