Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120389 by help last updated on 31/Oct/20

Commented by help last updated on 31/Oct/20

question 2a

$${question}\:\mathrm{2}{a} \\ $$

Commented by help last updated on 31/Oct/20

question 3a pls

$${question}\:\mathrm{3}{a}\:{pls} \\ $$

Answered by Dwaipayan Shikari last updated on 31/Oct/20

x^2 −((√2)+i+(√2)−i)x+((√2)+i)((√2)−i)=0  x^2 −2(√2)x+3=0

$${x}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}+{i}+\sqrt{\mathrm{2}}−{i}\right){x}+\left(\sqrt{\mathrm{2}}+{i}\right)\left(\sqrt{\mathrm{2}}−{i}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{x}+\mathrm{3}=\mathrm{0} \\ $$

Answered by bramlexs22 last updated on 31/Oct/20

(z−((√2)+i))(z−((√2)−i))=0  ⇒z^2 −((√2)−i)z−((√2)+i)z+((√2)+i)((√2)−i)=0   z^2 −2(√2) z+2+1=0   z^2 −2(√2)z+3 = 0

$$\left({z}−\left(\sqrt{\mathrm{2}}+{i}\right)\right)\left({z}−\left(\sqrt{\mathrm{2}}−{i}\right)\right)=\mathrm{0} \\ $$$$\Rightarrow{z}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}−{i}\right){z}−\left(\sqrt{\mathrm{2}}+{i}\right){z}+\left(\sqrt{\mathrm{2}}+{i}\right)\left(\sqrt{\mathrm{2}}−{i}\right)=\mathrm{0} \\ $$$$\:{z}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}\:{z}+\mathrm{2}+\mathrm{1}=\mathrm{0} \\ $$$$\:{z}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{z}+\mathrm{3}\:=\:\mathrm{0} \\ $$

Answered by ebi last updated on 31/Oct/20

3a  let f(z)=z^3 −4z^2 +7z−6    finding the factor of f(z)  f(1)=1^3 −4(1)^2 +7(1)−6=−2≠0  ∴ (z−1) is not a factor  f(2)=2^3 −4(2)^2 +7(2)−6=0  ∴ (z−2) is a factor    ((z^3 −4z^2 +7z−6)/(z−2)) /long division               z^2 −2z+3  z−2 (√(z^3 −4z^2 +7z−6))  ((−(z^3 −2z^2 ))/(                  −2z^2 +7z))  ((      −(−2z^2 +4z))/(                                 3z−6))  ((                           −(3z−6))/(                            0))  f(z)=(z−2)(z^2 −2z+3)=0  z−2=0  →  z=2 (real root)  z^2 −2z+3=0  z^2 −2z+(−1)^2 =(−1)^2 −3  (z−1)^2 =−2  z−1=±i(√2),  i=(√(−1))  z=1±i(√2)  z=1+i(√2) or z=1−i(√2) (complex root)    ∴ the roots of f(z) are   z=2, z=1+i(√2), z=1−i(√2)

$$\mathrm{3}{a} \\ $$$${let}\:{f}\left({z}\right)={z}^{\mathrm{3}} −\mathrm{4}{z}^{\mathrm{2}} +\mathrm{7}{z}−\mathrm{6} \\ $$$$ \\ $$$${finding}\:{the}\:{factor}\:{of}\:{f}\left({z}\right) \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}^{\mathrm{3}} −\mathrm{4}\left(\mathrm{1}\right)^{\mathrm{2}} +\mathrm{7}\left(\mathrm{1}\right)−\mathrm{6}=−\mathrm{2}\neq\mathrm{0} \\ $$$$\therefore\:\left({z}−\mathrm{1}\right)\:{is}\:{not}\:{a}\:{factor} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{2}^{\mathrm{3}} −\mathrm{4}\left(\mathrm{2}\right)^{\mathrm{2}} +\mathrm{7}\left(\mathrm{2}\right)−\mathrm{6}=\mathrm{0} \\ $$$$\therefore\:\left({z}−\mathrm{2}\right)\:{is}\:{a}\:{factor} \\ $$$$ \\ $$$$\frac{{z}^{\mathrm{3}} −\mathrm{4}{z}^{\mathrm{2}} +\mathrm{7}{z}−\mathrm{6}}{{z}−\mathrm{2}}\:/{long}\:{division} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{3} \\ $$$${z}−\mathrm{2}\:\sqrt{{z}^{\mathrm{3}} −\mathrm{4}{z}^{\mathrm{2}} +\mathrm{7}{z}−\mathrm{6}} \\ $$$$\frac{−\left({z}^{\mathrm{3}} −\mathrm{2}{z}^{\mathrm{2}} \right)}{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}{z}^{\mathrm{2}} +\mathrm{7}{z}} \\ $$$$\frac{\:\:\:\:\:\:−\left(−\mathrm{2}{z}^{\mathrm{2}} +\mathrm{4}{z}\right)}{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{z}−\mathrm{6}} \\ $$$$\frac{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(\mathrm{3}{z}−\mathrm{6}\right)}{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}} \\ $$$${f}\left({z}\right)=\left({z}−\mathrm{2}\right)\left({z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{3}\right)=\mathrm{0} \\ $$$${z}−\mathrm{2}=\mathrm{0}\:\:\rightarrow\:\:{z}=\mathrm{2}\:\left({real}\:{root}\right) \\ $$$${z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{3}=\mathrm{0} \\ $$$${z}^{\mathrm{2}} −\mathrm{2}{z}+\left(−\mathrm{1}\right)^{\mathrm{2}} =\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3} \\ $$$$\left({z}−\mathrm{1}\right)^{\mathrm{2}} =−\mathrm{2} \\ $$$${z}−\mathrm{1}=\pm{i}\sqrt{\mathrm{2}},\:\:{i}=\sqrt{−\mathrm{1}} \\ $$$${z}=\mathrm{1}\pm{i}\sqrt{\mathrm{2}} \\ $$$${z}=\mathrm{1}+{i}\sqrt{\mathrm{2}}\:{or}\:{z}=\mathrm{1}−{i}\sqrt{\mathrm{2}}\:\left({complex}\:{root}\right) \\ $$$$ \\ $$$$\therefore\:{the}\:{roots}\:{of}\:{f}\left({z}\right)\:{are}\: \\ $$$${z}=\mathrm{2},\:{z}=\mathrm{1}+{i}\sqrt{\mathrm{2}},\:{z}=\mathrm{1}−{i}\sqrt{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com