Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120131 by huotpat last updated on 29/Oct/20

Commented by Dwaipayan Shikari last updated on 29/Oct/20

lim_(x→3) ((2^x −2^3 )/(sin(πx)))=2^3 ((2^(x−3) −1)/(sin(3π−πx)))  =2^3 .((2^(x−3) −1)/(π(3−x)))=−(2^3 /π).((2^(x−3) −1)/(x−3))=−(8/π).log(2)  sin(3π−θ)=sinθ  sin(3π−3x)→3π−3x

$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\mathrm{2}^{{x}} −\mathrm{2}^{\mathrm{3}} }{{sin}\left(\pi{x}\right)}=\mathrm{2}^{\mathrm{3}} \frac{\mathrm{2}^{{x}−\mathrm{3}} −\mathrm{1}}{{sin}\left(\mathrm{3}\pi−\pi{x}\right)} \\ $$$$=\mathrm{2}^{\mathrm{3}} .\frac{\mathrm{2}^{{x}−\mathrm{3}} −\mathrm{1}}{\pi\left(\mathrm{3}−{x}\right)}=−\frac{\mathrm{2}^{\mathrm{3}} }{\pi}.\frac{\mathrm{2}^{{x}−\mathrm{3}} −\mathrm{1}}{{x}−\mathrm{3}}=−\frac{\mathrm{8}}{\pi}.{log}\left(\mathrm{2}\right) \\ $$$${sin}\left(\mathrm{3}\pi−\theta\right)={sin}\theta \\ $$$${sin}\left(\mathrm{3}\pi−\mathrm{3}{x}\right)\rightarrow\mathrm{3}\pi−\mathrm{3}{x} \\ $$

Answered by Bird last updated on 29/Oct/20

f(x)=((2^x −8)/(sin(πx))) ⇒  f(x)=_(x−3=t)    ((2^(t+3) −8)/(sin(π(t+3))))  =((8(2^t −1))/(sin(πt+π))) =−8((2^t −1)/(sin(πt)))  2^t −1 =e^(tln2) −1 ∼1+tln2−1=tln2 ⇒  f(3+t)∼−8.((tln2)/(sin(πt)))  =−((8ln(2))/π)×((πt)/(sin(πt))) →−((8ln(2))/π)  ⇒lim_(t→o) f(3+t) =−((8ln2)/π)  =lim_(x→3) f(x)

$${f}\left({x}\right)=\frac{\mathrm{2}^{{x}} −\mathrm{8}}{{sin}\left(\pi{x}\right)}\:\Rightarrow \\ $$$${f}\left({x}\right)=_{{x}−\mathrm{3}={t}} \:\:\:\frac{\mathrm{2}^{{t}+\mathrm{3}} −\mathrm{8}}{{sin}\left(\pi\left({t}+\mathrm{3}\right)\right)} \\ $$$$=\frac{\mathrm{8}\left(\mathrm{2}^{{t}} −\mathrm{1}\right)}{{sin}\left(\pi{t}+\pi\right)}\:=−\mathrm{8}\frac{\mathrm{2}^{{t}} −\mathrm{1}}{{sin}\left(\pi{t}\right)} \\ $$$$\mathrm{2}^{{t}} −\mathrm{1}\:={e}^{{tln}\mathrm{2}} −\mathrm{1}\:\sim\mathrm{1}+{tln}\mathrm{2}−\mathrm{1}={tln}\mathrm{2}\:\Rightarrow \\ $$$${f}\left(\mathrm{3}+{t}\right)\sim−\mathrm{8}.\frac{{tln}\mathrm{2}}{{sin}\left(\pi{t}\right)} \\ $$$$=−\frac{\mathrm{8}{ln}\left(\mathrm{2}\right)}{\pi}×\frac{\pi{t}}{{sin}\left(\pi{t}\right)}\:\rightarrow−\frac{\mathrm{8}{ln}\left(\mathrm{2}\right)}{\pi} \\ $$$$\Rightarrow{lim}_{{t}\rightarrow{o}} {f}\left(\mathrm{3}+{t}\right)\:=−\frac{\mathrm{8}{ln}\mathrm{2}}{\pi} \\ $$$$={lim}_{{x}\rightarrow\mathrm{3}} {f}\left({x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com