Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 11988 by tawa last updated on 08/Apr/17

Commented by tawa last updated on 09/Apr/17

please help with this. Thanks in advance. 16a, 16b, 17a

$$\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this}.\:\mathrm{Thanks}\:\mathrm{in}\:\mathrm{advance}.\:\mathrm{16a},\:\mathrm{16b},\:\mathrm{17a} \\ $$

Commented by tawa last updated on 09/Apr/17

It remain 17a sirs. God bless you all for the help.

$$\mathrm{It}\:\mathrm{remain}\:\mathrm{17a}\:\mathrm{sirs}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{all}\:\mathrm{for}\:\mathrm{the}\:\mathrm{help}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 09/Apr/17

F_R =(_(4+5−1−5) ^(−5+2+2+3) )=(_3 ^2 )=resultant  −F_R =(_(−3) ^(−2) ),will keep system in equilibrum.

$${F}_{{R}} =\left(_{\mathrm{4}+\mathrm{5}−\mathrm{1}−\mathrm{5}} ^{−\mathrm{5}+\mathrm{2}+\mathrm{2}+\mathrm{3}} \right)=\left(_{\mathrm{3}} ^{\mathrm{2}} \right)={resultant} \\ $$$$−{F}_{{R}} =\left(_{−\mathrm{3}} ^{−\mathrm{2}} \right),{will}\:{keep}\:{system}\:{in}\:{equilibrum}. \\ $$

Answered by ajfour last updated on 09/Apr/17

Commented by ajfour last updated on 09/Apr/17

let OM= xi^� +yj^�   RM=QP   ⇒ (x+5)i^� +(y−2)j^�  =3i^� +2j^�   so, x= −2  and  y =4  .  ∣PM∣=(√([4−(−2)]^2 +(5−4)^2 )) =(√(37))  ∣PQ∣=(√((4−1)^2 +(5−3)^2 )) =(√(13))  cos θ =((QP.MP)/(∣QP∣∣MP∣))     = (([(4−1)i^� +(5−3)j^� ].[(4−(−2))i^� +(5−4)j^� ])/((√(3^2 +2^2 )) (√(6^2 +1^2 ))))     cos θ =((20)/((√(13))(√(37))))  Area PQRM =QP×MP          = (3i^� +2j^� )×(6i^� +j^� )          = 18k^� −12k^�  = 6k^�  .

$${let}\:\boldsymbol{{OM}}=\:{x}\hat {{i}}+{y}\hat {{j}} \\ $$$$\boldsymbol{{RM}}=\boldsymbol{{QP}}\: \\ $$$$\Rightarrow\:\left({x}+\mathrm{5}\right)\hat {{i}}+\left({y}−\mathrm{2}\right)\hat {{j}}\:=\mathrm{3}\hat {{i}}+\mathrm{2}\hat {{j}} \\ $$$${so},\:{x}=\:−\mathrm{2}\:\:{and}\:\:{y}\:=\mathrm{4}\:\:. \\ $$$$\mid\boldsymbol{{PM}}\mid=\sqrt{\left[\mathrm{4}−\left(−\mathrm{2}\right)\right]^{\mathrm{2}} +\left(\mathrm{5}−\mathrm{4}\right)^{\mathrm{2}} }\:=\sqrt{\mathrm{37}} \\ $$$$\mid\boldsymbol{{PQ}}\mid=\sqrt{\left(\mathrm{4}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{5}−\mathrm{3}\right)^{\mathrm{2}} }\:=\sqrt{\mathrm{13}} \\ $$$$\mathrm{cos}\:\theta\:=\frac{\boldsymbol{{QP}}.\boldsymbol{{MP}}}{\mid\boldsymbol{{QP}}\mid\mid\boldsymbol{{MP}}\mid} \\ $$$$\:\:\:=\:\frac{\left[\left(\mathrm{4}−\mathrm{1}\right)\hat {{i}}+\left(\mathrm{5}−\mathrm{3}\right)\hat {{j}}\right].\left[\left(\mathrm{4}−\left(−\mathrm{2}\right)\right)\hat {{i}}+\left(\mathrm{5}−\mathrm{4}\right)\hat {{j}}\right]}{\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }} \\ $$$$\:\:\:\mathrm{cos}\:\theta\:=\frac{\mathrm{20}}{\sqrt{\mathrm{13}}\sqrt{\mathrm{37}}} \\ $$$${Area}\:{PQRM}\:=\boldsymbol{{QP}}×\boldsymbol{{MP}} \\ $$$$\:\:\:\:\:\:\:\:=\:\left(\mathrm{3}\hat {{i}}+\mathrm{2}\hat {{j}}\right)×\left(\mathrm{6}\hat {{i}}+\hat {{j}}\right) \\ $$$$\:\:\:\:\:\:\:\:=\:\mathrm{18}\hat {{k}}−\mathrm{12}\hat {{k}}\:=\:\mathrm{6}\hat {{k}}\:. \\ $$$$ \\ $$$$\:\:\:\:\: \\ $$

Commented by tawa last updated on 09/Apr/17

Wow, i really appreciate sir. God bless you sir.

$$\mathrm{Wow},\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by tawa last updated on 09/Apr/17

Please sir. it remain number 17a

$$\mathrm{Please}\:\mathrm{sir}.\:\mathrm{it}\:\mathrm{remain}\:\mathrm{number}\:\mathrm{17a} \\ $$

Answered by mrW1 last updated on 09/Apr/17

17a  (i) Σ_(k=1) ^4 F_k =(−5+2+2+3)i+(4+5−1−5)j=2i+3j  (ii) F_5 =−Σ_(k=1) ^4 F_k =−2i−3j= (((−2)),((−3)) )

$$\mathrm{17}{a} \\ $$$$\left({i}\right)\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}{F}_{{k}} =\left(−\mathrm{5}+\mathrm{2}+\mathrm{2}+\mathrm{3}\right){i}+\left(\mathrm{4}+\mathrm{5}−\mathrm{1}−\mathrm{5}\right){j}=\mathrm{2}{i}+\mathrm{3}{j} \\ $$$$\left({ii}\right)\:{F}_{\mathrm{5}} =−\underset{{k}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}{F}_{{k}} =−\mathrm{2}{i}−\mathrm{3}{j}=\begin{pmatrix}{−\mathrm{2}}\\{−\mathrm{3}}\end{pmatrix} \\ $$

Commented by tawa last updated on 09/Apr/17

I really appreciate sir. God bless you

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\: \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 09/Apr/17

hi mrW1.please see Q.n:11338.

$${hi}\:{mrW}\mathrm{1}.{please}\:{see}\:{Q}.{n}:\mathrm{11338}. \\ $$

Commented by mrW1 last updated on 10/Apr/17

I have no solution yet.

$${I}\:{have}\:{no}\:{solution}\:{yet}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com