Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 119473 by help last updated on 24/Oct/20

Commented by 1549442205PVT last updated on 25/Oct/20

I think that question isn′t clearly.You  need must add that above equality be  an identity that means it is true for  ∀x≠−1/2 othewise we can find infinite  many values of m satisfying the condition  of above problem

$$\mathrm{I}\:\mathrm{think}\:\mathrm{that}\:\mathrm{question}\:\mathrm{isn}'\mathrm{t}\:\mathrm{clearly}.\mathrm{You} \\ $$$$\mathrm{need}\:\mathrm{must}\:\mathrm{add}\:\mathrm{that}\:\mathrm{above}\:\mathrm{equality}\:\mathrm{be} \\ $$$$\mathrm{an}\:\mathrm{identity}\:\mathrm{that}\:\mathrm{means}\:\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for} \\ $$$$\forall\mathrm{x}\neq−\mathrm{1}/\mathrm{2}\:\mathrm{othewise}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{infinite} \\ $$$$\mathrm{many}\:\mathrm{values}\:\mathrm{of}\:\mathrm{m}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{condition} \\ $$$$\mathrm{of}\:\mathrm{above}\:\mathrm{problem} \\ $$

Answered by Sach last updated on 24/Oct/20

((12x^2 +mx+23)/(2x+1))=6x−18+((41)/(2x+1))  ⇔12x^2 +mx+23=6(2x+1)(x−3)+41  ⇔12x^2 +mx=6(2x+1)(x−3)+18=12x^2 −30x  ⇔m=−30    that last ′′⇔′′ is not so obvious  you can convince yourself that it is true by triing a few values (for instance x=1)  this gives that m can only be −30 (⇒)  and then you can recalculate to see that −30 works (⇐)    if you want to be both rigorous and short you can use the fact that there is a unique simplified expression of elements of R(X) but this is may be too advanced to be wath is expected here...

$$\frac{\mathrm{12}{x}^{\mathrm{2}} +{mx}+\mathrm{23}}{\mathrm{2}{x}+\mathrm{1}}=\mathrm{6}{x}−\mathrm{18}+\frac{\mathrm{41}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$\Leftrightarrow\mathrm{12}{x}^{\mathrm{2}} +{mx}+\mathrm{23}=\mathrm{6}\left(\mathrm{2}{x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)+\mathrm{41} \\ $$$$\Leftrightarrow\mathrm{12}{x}^{\mathrm{2}} +{mx}=\mathrm{6}\left(\mathrm{2}{x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)+\mathrm{18}=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{30}{x} \\ $$$$\Leftrightarrow{m}=−\mathrm{30} \\ $$$$ \\ $$$${that}\:{last}\:''\Leftrightarrow''\:{is}\:{not}\:{so}\:{obvious} \\ $$$${you}\:{can}\:{convince}\:{yourself}\:{that}\:{it}\:{is}\:{true}\:{by}\:{triing}\:{a}\:{few}\:{values}\:\left({for}\:{instance}\:{x}=\mathrm{1}\right) \\ $$$${this}\:{gives}\:{that}\:{m}\:{can}\:{only}\:{be}\:−\mathrm{30}\:\left(\Rightarrow\right) \\ $$$${and}\:{then}\:{you}\:{can}\:{recalculate}\:{to}\:{see}\:{that}\:−\mathrm{30}\:{works}\:\left(\Leftarrow\right) \\ $$$$ \\ $$$${if}\:{you}\:{want}\:{to}\:{be}\:{both}\:{rigorous}\:{and}\:{short}\:{you}\:{can}\:{use}\:{the}\:{fact}\:{that}\:{there}\:{is}\:{a}\:{unique}\:{simplified}\:{expression}\:{of}\:{elements}\:{of}\:\mathbb{R}\left(\mathrm{X}\right)\:{but}\:{this}\:{is}\:{may}\:{be}\:{too}\:{advanced}\:{to}\:{be}\:{wath}\:{is}\:{expected}\:{here}... \\ $$$$ \\ $$

Commented by 1549442205PVT last updated on 25/Oct/20

Ok,excuse me .The equation that you  given here is special ,so it has  only one  unique value of m.

$$\mathrm{Ok},\mathrm{excuse}\:\mathrm{me}\:.\mathrm{The}\:\mathrm{equation}\:\mathrm{that}\:\mathrm{you} \\ $$$$\mathrm{given}\:\mathrm{here}\:\mathrm{is}\:\mathrm{special}\:,\mathrm{so}\:\mathrm{it}\:\mathrm{has}\:\:\mathrm{only}\:\mathrm{one} \\ $$$$\mathrm{unique}\:\mathrm{value}\:\mathrm{of}\:\mathrm{m}. \\ $$

Answered by TANMAY PANACEA last updated on 25/Oct/20

((12x^2 +mx+23−41+41)/(2x+1))=6x−18+((41)/(2x+1))  ((12x^2 +mx−18)/(2x+1))+((41)/(2x+1))=6x−18+((41)/(2x+1))  12x^2 +mx−18=(2x+1)(6x−18)  12x^2 +mx−18=12x^2 −36x+6x−18  mx=−30x  m=−39

$$\frac{\mathrm{12}{x}^{\mathrm{2}} +{mx}+\mathrm{23}−\mathrm{41}+\mathrm{41}}{\mathrm{2}{x}+\mathrm{1}}=\mathrm{6}{x}−\mathrm{18}+\frac{\mathrm{41}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$\frac{\mathrm{12}{x}^{\mathrm{2}} +{mx}−\mathrm{18}}{\mathrm{2}{x}+\mathrm{1}}+\frac{\mathrm{41}}{\mathrm{2}{x}+\mathrm{1}}=\mathrm{6}{x}−\mathrm{18}+\frac{\mathrm{41}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$\mathrm{12}{x}^{\mathrm{2}} +{mx}−\mathrm{18}=\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{6}{x}−\mathrm{18}\right) \\ $$$$\mathrm{12}{x}^{\mathrm{2}} +{mx}−\mathrm{18}=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{36}{x}+\mathrm{6}{x}−\mathrm{18} \\ $$$${mx}=−\mathrm{30}{x}\:\:{m}=−\mathrm{39} \\ $$

Answered by mathmax by abdo last updated on 25/Oct/20

e⇒12x^2 +mx+23=6x(2x+1)−18(2x+1)+41 ⇒  12x^2 +mx+23=12x^2 +6x−36x−18+41 ⇒  mx+23=−30x +23 ⇒mx=−30x ⇒x(m+30)=0  if x≠0 we get m=−30

$$\mathrm{e}\Rightarrow\mathrm{12x}^{\mathrm{2}} +\mathrm{mx}+\mathrm{23}=\mathrm{6x}\left(\mathrm{2x}+\mathrm{1}\right)−\mathrm{18}\left(\mathrm{2x}+\mathrm{1}\right)+\mathrm{41}\:\Rightarrow \\ $$$$\mathrm{12x}^{\mathrm{2}} +\mathrm{mx}+\mathrm{23}=\mathrm{12x}^{\mathrm{2}} +\mathrm{6x}−\mathrm{36x}−\mathrm{18}+\mathrm{41}\:\Rightarrow \\ $$$$\mathrm{mx}+\mathrm{23}=−\mathrm{30x}\:+\mathrm{23}\:\Rightarrow\mathrm{mx}=−\mathrm{30x}\:\Rightarrow\mathrm{x}\left(\mathrm{m}+\mathrm{30}\right)=\mathrm{0} \\ $$$$\mathrm{if}\:\mathrm{x}\neq\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{m}=−\mathrm{30} \\ $$

Answered by Jamshidbek2311 last updated on 25/Oct/20

x=−1 ⇒  ((12−m+23)/(−2+1))=−6−18+((41)/(−2+1))  ((35−m)/(−1))=−6−18−41  35−m=65 ⇒ m=−30

$${x}=−\mathrm{1}\:\Rightarrow\:\:\frac{\mathrm{12}−{m}+\mathrm{23}}{−\mathrm{2}+\mathrm{1}}=−\mathrm{6}−\mathrm{18}+\frac{\mathrm{41}}{−\mathrm{2}+\mathrm{1}} \\ $$$$\frac{\mathrm{35}−{m}}{−\mathrm{1}}=−\mathrm{6}−\mathrm{18}−\mathrm{41} \\ $$$$\mathrm{35}−{m}=\mathrm{65}\:\Rightarrow\:{m}=−\mathrm{30} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com