Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 119155 by zakirullah last updated on 22/Oct/20

Commented by zakirullah last updated on 22/Oct/20

if a = i+j+k, b = 4i−2n+3k, c = i−2j+k then  find a vecter of magnitude 6 unit  which is parellel to the vecter 2a−b+3c.

$${if}\:{a}\:=\:{i}+{j}+{k},\:{b}\:=\:\mathrm{4}{i}−\mathrm{2}{n}+\mathrm{3}{k},\:{c}\:=\:{i}−\mathrm{2}{j}+{k}\:{then} \\ $$$${find}\:{a}\:{vecter}\:{of}\:{magnitude}\:\mathrm{6}\:{unit} \\ $$$${which}\:{is}\:{parellel}\:{to}\:{the}\:{vecter}\:\mathrm{2}{a}−{b}+\mathrm{3}{c}. \\ $$

Commented by PRITHWISH SEN 2 last updated on 22/Oct/20

2a−b+3c=(2−4+3)i+(2+2−6)j+(2−3+3)k               = i−2j+2k...(i)  let the parallel vecor to (i) is  pi+qj+rk  ∴(p/1)=(q/(−2))=(r/2) = λ say  now p^2 +q^2 +r^2 = 6^2 = 36  λ^2 (1+4+4)=36⇒λ=±2  the required vector  2i−4j+4k      or  −2i+4j−4k  sorry i have fix it.i am making typo a habbit.

$$\mathrm{2a}−\mathrm{b}+\mathrm{3c}=\left(\mathrm{2}−\mathrm{4}+\mathrm{3}\right)\mathrm{i}+\left(\mathrm{2}+\mathrm{2}−\mathrm{6}\right)\mathrm{j}+\left(\mathrm{2}−\mathrm{3}+\mathrm{3}\right)\mathrm{k} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{i}−\mathrm{2j}+\mathrm{2k}...\left(\mathrm{i}\right) \\ $$$$\mathrm{let}\:\mathrm{the}\:\mathrm{parallel}\:\mathrm{vecor}\:\mathrm{to}\:\left(\mathrm{i}\right)\:\mathrm{is} \\ $$$$\mathrm{p}\boldsymbol{\mathrm{i}}+\mathrm{q}\boldsymbol{\mathrm{j}}+\mathrm{r}\boldsymbol{\mathrm{k}} \\ $$$$\therefore\frac{\mathrm{p}}{\mathrm{1}}=\frac{\mathrm{q}}{−\mathrm{2}}=\frac{\mathrm{r}}{\mathrm{2}}\:=\:\lambda\:\mathrm{say} \\ $$$$\mathrm{now}\:\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} =\:\mathrm{6}^{\mathrm{2}} =\:\mathrm{36} \\ $$$$\lambda^{\mathrm{2}} \left(\mathrm{1}+\mathrm{4}+\mathrm{4}\right)=\mathrm{36}\Rightarrow\lambda=\pm\mathrm{2} \\ $$$$\mathrm{the}\:\mathrm{required}\:\mathrm{vector} \\ $$$$\mathrm{2i}−\mathrm{4j}+\mathrm{4k} \\ $$$$\:\:\:\:\mathrm{or} \\ $$$$−\mathrm{2i}+\mathrm{4j}−\mathrm{4k} \\ $$$$\mathrm{sorry}\:\mathrm{i}\:\mathrm{have}\:\mathrm{fix}\:\mathrm{it}.\mathrm{i}\:\mathrm{am}\:\mathrm{making}\:\mathrm{typo}\:\mathrm{a}\:\mathrm{habbit}. \\ $$

Commented by zakirullah last updated on 22/Oct/20

Sir a boundle of thanks

$$\boldsymbol{{Sir}}\:\boldsymbol{{a}}\:\boldsymbol{{boundle}}\:\boldsymbol{{of}}\:\boldsymbol{{thanks}} \\ $$

Commented by PRITHWISH SEN 2 last updated on 22/Oct/20

welcome

$$\mathrm{welcome} \\ $$

Commented by zakirullah last updated on 22/Oct/20

sir how ⋋ = 3 or −3

$$\boldsymbol{{sir}}\:\boldsymbol{{how}}\:\leftthreetimes\:=\:\mathrm{3}\:{or}\:−\mathrm{3} \\ $$

Answered by Dwaipayan Shikari last updated on 22/Oct/20

a^→ =i^� +j^� +k^� , b^→ =4i^� −2j^� +3k^�  ,c^→ =i^� −2j^� +k^�   2a^→ −b^→ +3c^→ =i^� −2j^� +2k^�   ∣2a^→ −b^→ +3c^→ ∣=(√(1^2 +(−2)^2 +2^2 ))=3  (2a^→ −b^→ +3c^→ ).(p^→ )=∣2a^→ −b^→ +3c^→ ∣∣p^→ ∣cos0°  (i^� −2j^� +2k^� )(p^→ )=18    Take  p^→ =xi^� +yj^� +zk^�     x−2y+2z=18  One solution  x=2  y=1   z=9  p^→ =2i^� +j^� +9k^�   Or x=2 y=−4 z=4  p^→ =2i^� −4j^� +4k^�   many solutions

$$\overset{\rightarrow} {{a}}=\hat {{i}}+\hat {{j}}+\hat {{k}},\:\overset{\rightarrow} {{b}}=\mathrm{4}\hat {{i}}−\mathrm{2}\hat {{j}}+\mathrm{3}\hat {{k}}\:,\overset{\rightarrow} {{c}}=\hat {{i}}−\mathrm{2}\hat {{j}}+\hat {{k}} \\ $$$$\mathrm{2}\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}+\mathrm{3}\overset{\rightarrow} {{c}}=\hat {{i}}−\mathrm{2}\hat {{j}}+\mathrm{2}\hat {{k}} \\ $$$$\mid\mathrm{2}\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}+\mathrm{3}\overset{\rightarrow} {{c}}\mid=\sqrt{\mathrm{1}^{\mathrm{2}} +\left(−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }=\mathrm{3} \\ $$$$\left(\mathrm{2}\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}+\mathrm{3}\overset{\rightarrow} {{c}}\right).\left(\overset{\rightarrow} {{p}}\right)=\mid\mathrm{2}\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}+\mathrm{3}\overset{\rightarrow} {{c}}\mid\mid\overset{\rightarrow} {{p}}\mid{cos}\mathrm{0}° \\ $$$$\left(\hat {{i}}−\mathrm{2}\hat {{j}}+\mathrm{2}\hat {{k}}\right)\left(\overset{\rightarrow} {{p}}\right)=\mathrm{18} \\ $$$$\:\:{Take}\:\:\overset{\rightarrow} {{p}}={x}\hat {{i}}+{y}\hat {{j}}+{z}\hat {{k}}\:\: \\ $$$${x}−\mathrm{2}{y}+\mathrm{2}{z}=\mathrm{18} \\ $$$${One}\:{solution} \\ $$$${x}=\mathrm{2}\:\:{y}=\mathrm{1}\:\:\:{z}=\mathrm{9} \\ $$$$\overset{\rightarrow} {{p}}=\mathrm{2}\hat {{i}}+\hat {{j}}+\mathrm{9}\hat {{k}} \\ $$$${Or}\:{x}=\mathrm{2}\:{y}=−\mathrm{4}\:{z}=\mathrm{4} \\ $$$$\overset{\rightarrow} {{p}}=\mathrm{2}\hat {{i}}−\mathrm{4}\hat {{j}}+\mathrm{4}\hat {{k}} \\ $$$${many}\:{solutions} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com