Question Number 119008 by zakirullah last updated on 21/Oct/20 | ||
Commented by zakirullah last updated on 21/Oct/20 | ||
$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{initial}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{p}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{the}}\:\: \\ $$$$\boldsymbol{\mathrm{terminal}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{Q}}\:\boldsymbol{{whichever}}\:\boldsymbol{{is}}\:\boldsymbol{{missing}}? \\ $$$$\boldsymbol{{i}}.\:\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\:\left[−\mathrm{2},\mathrm{3}\right],\:\boldsymbol{{P}}\left(\mathrm{1},−\mathrm{2}\right) \\ $$$$\boldsymbol{{ii}}.\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\left[\mathrm{4},−\mathrm{5}\right],\:\boldsymbol{{Q}}\left(−\mathrm{1},\mathrm{1}\right) \\ $$$$\boldsymbol{{iii}}.\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\:\left[−\mathrm{1},\mathrm{3},−\mathrm{2}\right],\:\boldsymbol{{P}}\left(\mathrm{2},−\mathrm{1},−\mathrm{3}\right) \\ $$$$\boldsymbol{{iv}}.\:\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\left[\mathrm{2},−\mathrm{3},−\mathrm{4}\right],\:\boldsymbol{{Q}}\left(\mathrm{3},−\mathrm{1},\mathrm{4}\right) \\ $$ | ||
Answered by ebi last updated on 21/Oct/20 | ||
$$ \\ $$$${point}\:{P}\left({p}_{\mathrm{1}} ,{p}_{\mathrm{2}} ,...,{p}_{{n}} \right),\:{Q}\left({q}_{\mathrm{1}} ,{q}_{\mathrm{2}} ,...,{q}_{{n}} \right) \\ $$$${component},\:{P}\overset{\rightarrow} {{Q}}=\langle{q}_{\mathrm{1}} −{p}_{\mathrm{1}} ,{q}_{\mathrm{2}} −{p}_{\mathrm{1}} ,...,{q}_{{n}} −{p}_{{n}} \rangle=\langle{u}_{\mathrm{1}} ,{u}_{\mathrm{2}} ,...,{u}_{{n}} \rangle \\ $$$${magnitude},\mid\mid{P}\overset{\rightarrow} {{Q}}\mid\mid=\sqrt{{u}_{\mathrm{1}} ^{\mathrm{2}} +{u}_{\mathrm{2}} ^{\mathrm{2}} +...+{u}_{{n}} ^{\mathrm{2}} } \\ $$$$ \\ $$$${Question}\:\mathrm{2} \\ $$$$\left.{i}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{2},\mathrm{3}\rangle,\:\:\:{P}\left(\mathrm{1},−\mathrm{2}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{2},\mathrm{3}\rangle=\langle{q}_{\mathrm{1}} −\mathrm{1},{q}_{\mathrm{2}} +\mathrm{2}\rangle \\ $$$${Q}\left(−\mathrm{1},\mathrm{1}\right) \\ $$$$ \\ $$$$\left.{ii}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{4},−\mathrm{5}\rangle,\:\:\:{Q}\left(−\mathrm{1},\mathrm{1}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{4},−\mathrm{5}\rangle=\langle−\mathrm{1}−{p}_{\mathrm{1}} ,\mathrm{1}−{p}_{\mathrm{2}} \rangle \\ $$$${P}\left(−\mathrm{5},\mathrm{6}\right) \\ $$$$ \\ $$$$\left.{iii}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{1},\mathrm{3},−\mathrm{2}\rangle,\:\:\:{P}\left(\mathrm{2},−\mathrm{1},−\mathrm{3}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{1},\mathrm{3},−\mathrm{2}\rangle=\langle{q}_{\mathrm{1}} −\mathrm{2},{q}_{\mathrm{2}} +\mathrm{2},{q}_{\mathrm{3}} +\mathrm{3}\rangle \\ $$$${Q}\left(\mathrm{1},\mathrm{1},−\mathrm{5}\right) \\ $$$$ \\ $$$$\left.{iv}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{2},−\mathrm{3},−\mathrm{4}\rangle,\:\:\:{Q}\left(\mathrm{3}−\mathrm{1},\mathrm{4}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{2},−\mathrm{3},−\mathrm{4}\rangle=\langle\mathrm{3}−{p}_{\mathrm{1}} ,−\mathrm{1}−{p}_{\mathrm{2}} ,\mathrm{4}−{p}_{\mathrm{3}} \rangle \\ $$$${P}\left(\mathrm{1},\mathrm{2},\mathrm{8}\right) \\ $$ | ||
Commented by zakirullah last updated on 21/Oct/20 | ||
$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$ | ||