Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 119008 by zakirullah last updated on 21/Oct/20

Commented by zakirullah last updated on 21/Oct/20

find the initial point p or the    terminal point Q whichever is missing?  i.  PQ^→  = [−2,3], P(1,−2)  ii. PQ^→  =[4,−5], Q(−1,1)  iii. PQ^→  = [−1,3,−2], P(2,−1,−3)  iv.  PQ^→  =[2,−3,−4], Q(3,−1,4)

$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{initial}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{p}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{the}}\:\: \\ $$$$\boldsymbol{\mathrm{terminal}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{Q}}\:\boldsymbol{{whichever}}\:\boldsymbol{{is}}\:\boldsymbol{{missing}}? \\ $$$$\boldsymbol{{i}}.\:\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\:\left[−\mathrm{2},\mathrm{3}\right],\:\boldsymbol{{P}}\left(\mathrm{1},−\mathrm{2}\right) \\ $$$$\boldsymbol{{ii}}.\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\left[\mathrm{4},−\mathrm{5}\right],\:\boldsymbol{{Q}}\left(−\mathrm{1},\mathrm{1}\right) \\ $$$$\boldsymbol{{iii}}.\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\:\left[−\mathrm{1},\mathrm{3},−\mathrm{2}\right],\:\boldsymbol{{P}}\left(\mathrm{2},−\mathrm{1},−\mathrm{3}\right) \\ $$$$\boldsymbol{{iv}}.\:\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\left[\mathrm{2},−\mathrm{3},−\mathrm{4}\right],\:\boldsymbol{{Q}}\left(\mathrm{3},−\mathrm{1},\mathrm{4}\right) \\ $$

Answered by ebi last updated on 21/Oct/20

  point P(p_1 ,p_2 ,...,p_n ), Q(q_1 ,q_2 ,...,q_n )  component, PQ^→ =⟨q_1 −p_1 ,q_2 −p_1 ,...,q_n −p_n ⟩=⟨u_1 ,u_2 ,...,u_n ⟩  magnitude,∣∣PQ^→ ∣∣=(√(u_1 ^2 +u_2 ^2 +...+u_n ^2 ))    Question 2  i)  PQ^→ =⟨−2,3⟩,   P(1,−2)  PQ^→ =⟨−2,3⟩=⟨q_1 −1,q_2 +2⟩  Q(−1,1)    ii)  PQ^→ =⟨4,−5⟩,   Q(−1,1)  PQ^→ =⟨4,−5⟩=⟨−1−p_1 ,1−p_2 ⟩  P(−5,6)    iii)  PQ^→ =⟨−1,3,−2⟩,   P(2,−1,−3)  PQ^→ =⟨−1,3,−2⟩=⟨q_1 −2,q_2 +2,q_3 +3⟩  Q(1,1,−5)    iv)  PQ^→ =⟨2,−3,−4⟩,   Q(3−1,4)  PQ^→ =⟨2,−3,−4⟩=⟨3−p_1 ,−1−p_2 ,4−p_3 ⟩  P(1,2,8)

$$ \\ $$$${point}\:{P}\left({p}_{\mathrm{1}} ,{p}_{\mathrm{2}} ,...,{p}_{{n}} \right),\:{Q}\left({q}_{\mathrm{1}} ,{q}_{\mathrm{2}} ,...,{q}_{{n}} \right) \\ $$$${component},\:{P}\overset{\rightarrow} {{Q}}=\langle{q}_{\mathrm{1}} −{p}_{\mathrm{1}} ,{q}_{\mathrm{2}} −{p}_{\mathrm{1}} ,...,{q}_{{n}} −{p}_{{n}} \rangle=\langle{u}_{\mathrm{1}} ,{u}_{\mathrm{2}} ,...,{u}_{{n}} \rangle \\ $$$${magnitude},\mid\mid{P}\overset{\rightarrow} {{Q}}\mid\mid=\sqrt{{u}_{\mathrm{1}} ^{\mathrm{2}} +{u}_{\mathrm{2}} ^{\mathrm{2}} +...+{u}_{{n}} ^{\mathrm{2}} } \\ $$$$ \\ $$$${Question}\:\mathrm{2} \\ $$$$\left.{i}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{2},\mathrm{3}\rangle,\:\:\:{P}\left(\mathrm{1},−\mathrm{2}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{2},\mathrm{3}\rangle=\langle{q}_{\mathrm{1}} −\mathrm{1},{q}_{\mathrm{2}} +\mathrm{2}\rangle \\ $$$${Q}\left(−\mathrm{1},\mathrm{1}\right) \\ $$$$ \\ $$$$\left.{ii}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{4},−\mathrm{5}\rangle,\:\:\:{Q}\left(−\mathrm{1},\mathrm{1}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{4},−\mathrm{5}\rangle=\langle−\mathrm{1}−{p}_{\mathrm{1}} ,\mathrm{1}−{p}_{\mathrm{2}} \rangle \\ $$$${P}\left(−\mathrm{5},\mathrm{6}\right) \\ $$$$ \\ $$$$\left.{iii}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{1},\mathrm{3},−\mathrm{2}\rangle,\:\:\:{P}\left(\mathrm{2},−\mathrm{1},−\mathrm{3}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle−\mathrm{1},\mathrm{3},−\mathrm{2}\rangle=\langle{q}_{\mathrm{1}} −\mathrm{2},{q}_{\mathrm{2}} +\mathrm{2},{q}_{\mathrm{3}} +\mathrm{3}\rangle \\ $$$${Q}\left(\mathrm{1},\mathrm{1},−\mathrm{5}\right) \\ $$$$ \\ $$$$\left.{iv}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{2},−\mathrm{3},−\mathrm{4}\rangle,\:\:\:{Q}\left(\mathrm{3}−\mathrm{1},\mathrm{4}\right) \\ $$$${P}\overset{\rightarrow} {{Q}}=\langle\mathrm{2},−\mathrm{3},−\mathrm{4}\rangle=\langle\mathrm{3}−{p}_{\mathrm{1}} ,−\mathrm{1}−{p}_{\mathrm{2}} ,\mathrm{4}−{p}_{\mathrm{3}} \rangle \\ $$$${P}\left(\mathrm{1},\mathrm{2},\mathrm{8}\right) \\ $$

Commented by zakirullah last updated on 21/Oct/20

thanks sir

$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com