Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 118083 by pramod1977 last updated on 15/Oct/20

Answered by bemath last updated on 15/Oct/20

let a^→ =(2,1,−2)=diagonal and b^→ =(3,1,−1)=side  The area of parallelogram = ∣a^→  ×b^→  ∣  where a^→  × b^→  =  determinant (((2     1      −2)),((3     1       −1)))                 a^→  × b^→  = i−4j−k  The area = (√(1+16+1)) = 3(√2) sq units

$$\mathrm{let}\:\overset{\rightarrow} {\mathrm{a}}=\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right)=\mathrm{diagonal}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{b}}=\left(\mathrm{3},\mathrm{1},−\mathrm{1}\right)=\mathrm{side} \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{parallelogram}\:=\:\mid\overset{\rightarrow} {\mathrm{a}}\:×\overset{\rightarrow} {\mathrm{b}}\:\mid \\ $$$$\mathrm{where}\:\overset{\rightarrow} {\mathrm{a}}\:×\:\overset{\rightarrow} {\mathrm{b}}\:=\:\begin{vmatrix}{\mathrm{2}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:−\mathrm{2}}\\{\mathrm{3}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}}\end{vmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{\rightarrow} {\mathrm{a}}\:×\:\overset{\rightarrow} {\mathrm{b}}\:=\:{i}−\mathrm{4}{j}−{k} \\ $$$$\mathrm{The}\:\mathrm{area}\:=\:\sqrt{\mathrm{1}+\mathrm{16}+\mathrm{1}}\:=\:\mathrm{3}\sqrt{\mathrm{2}}\:\mathrm{sq}\:\mathrm{units} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com