Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117817 by peter frank last updated on 13/Oct/20

Commented by Lordose last updated on 13/Oct/20

A = ∫a^(√x) dx  u=(√x) ⇒ dx=2udu  A =∫2ua^u du  A = u  A = 2(((ua^u )/(lna)) − (1/(lna))∫a^u du)  A = ((2ua^u )/(lna)) − ((2a^u )/(ln^2 a))  A = ((2(√x)a^(√x) )/(lna)) − ((2a^(√x) )/(ln^2 a))  A = ((2a^(√x) )/(ln^2 a))((√x)lna − 1)  Q.E.D

$$\mathrm{A}\:=\:\int\mathrm{a}^{\sqrt{\mathrm{x}}} \mathrm{dx} \\ $$$$\mathrm{u}=\sqrt{\mathrm{x}}\:\Rightarrow\:\mathrm{dx}=\mathrm{2udu} \\ $$$$\mathrm{A}\:=\int\mathrm{2ua}^{\mathrm{u}} \mathrm{du} \\ $$$$\mathrm{A}\:=\:\mathrm{u} \\ $$$$\mathrm{A}\:=\:\mathrm{2}\left(\frac{\mathrm{ua}^{\mathrm{u}} }{\mathrm{lna}}\:−\:\frac{\mathrm{1}}{\mathrm{lna}}\int\mathrm{a}^{\mathrm{u}} \mathrm{du}\right) \\ $$$$\mathrm{A}\:=\:\frac{\mathrm{2ua}^{\mathrm{u}} }{\mathrm{lna}}\:−\:\frac{\mathrm{2a}^{\mathrm{u}} }{\mathrm{ln}^{\mathrm{2}} \mathrm{a}} \\ $$$$\mathrm{A}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{x}}\mathrm{a}^{\sqrt{\mathrm{x}}} }{\mathrm{lna}}\:−\:\frac{\mathrm{2a}^{\sqrt{\mathrm{x}}} }{\mathrm{ln}^{\mathrm{2}} \mathrm{a}} \\ $$$$\mathrm{A}\:=\:\frac{\mathrm{2a}^{\sqrt{\mathrm{x}}} }{\mathrm{ln}^{\mathrm{2}} \mathrm{a}}\left(\sqrt{\mathrm{x}}\mathrm{lna}\:−\:\mathrm{1}\right) \\ $$$$\mathrm{Q}.\mathrm{E}.\mathrm{D} \\ $$

Answered by snipers237 last updated on 13/Oct/20

A=∫2(√x)  a^(√x)  (dx/(2(√x)))  =∫ 2u e^(ulna) du     u=(√x)   by parts  f′=e^(ulna)   f=(a^u /(lna))   g=2u   g′=2  A=[((2u)/(lna)) a^u ]−(2/(lna))∫a^u du     =[((2u)/(lna))a^u −(2/((lna)^2 ))a^u ]+cte  LFYTC

$${A}=\int\mathrm{2}\sqrt{{x}}\:\:{a}^{\sqrt{{x}}} \:\frac{{dx}}{\mathrm{2}\sqrt{{x}}}\:\:=\int\:\mathrm{2}{u}\:{e}^{{ulna}} {du}\:\:\:\:\:{u}=\sqrt{{x}}\: \\ $$$${by}\:{parts}\:\:{f}'={e}^{{ulna}} \:\:{f}=\frac{{a}^{{u}} }{{lna}}\:\:\:{g}=\mathrm{2}{u}\:\:\:{g}'=\mathrm{2} \\ $$$${A}=\left[\frac{\mathrm{2}{u}}{{lna}}\:{a}^{{u}} \right]−\frac{\mathrm{2}}{{lna}}\int{a}^{{u}} {du} \\ $$$$\:\:\:=\left[\frac{\mathrm{2}{u}}{{lna}}{a}^{{u}} −\frac{\mathrm{2}}{\left({lna}\right)^{\mathrm{2}} }{a}^{{u}} \right]+{cte} \\ $$$${LFYTC} \\ $$

Answered by mathmax by abdo last updated on 13/Oct/20

I =∫ a^(√x) dx ⇒ I =∫ e^((√x)ln(a)) dx =_((√x)=t)   ∫ e^(tlna) (2t)dt  =2 ∫ t e^(tln(a))  dt =_(by parts)   2{  (t/(lna))e^(tlna) −∫  (1/(lna))e^(tlna) dt}  =2{ (t/(lna))e^(tlna) −(1/(ln^2 a)) e^(tlna) } +c  =2{((√x)/(lna)) a^(√x)  −(1/(ln^2 a)) a^(√x) } +c

$$\mathrm{I}\:=\int\:\mathrm{a}^{\sqrt{\mathrm{x}}} \mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int\:\mathrm{e}^{\sqrt{\mathrm{x}}\mathrm{ln}\left(\mathrm{a}\right)} \mathrm{dx}\:=_{\sqrt{\mathrm{x}}=\mathrm{t}} \:\:\int\:\mathrm{e}^{\mathrm{tlna}} \left(\mathrm{2t}\right)\mathrm{dt} \\ $$$$=\mathrm{2}\:\int\:\mathrm{t}\:\mathrm{e}^{\mathrm{tln}\left(\mathrm{a}\right)} \:\mathrm{dt}\:=_{\mathrm{by}\:\mathrm{parts}} \:\:\mathrm{2}\left\{\:\:\frac{\mathrm{t}}{\mathrm{lna}}\mathrm{e}^{\mathrm{tlna}} −\int\:\:\frac{\mathrm{1}}{\mathrm{lna}}\mathrm{e}^{\mathrm{tlna}} \mathrm{dt}\right\} \\ $$$$=\mathrm{2}\left\{\:\frac{\mathrm{t}}{\mathrm{lna}}\mathrm{e}^{\mathrm{tlna}} −\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{a}}\:\mathrm{e}^{\mathrm{tlna}} \right\}\:+\mathrm{c} \\ $$$$=\mathrm{2}\left\{\frac{\sqrt{\mathrm{x}}}{\mathrm{lna}}\:\mathrm{a}^{\sqrt{\mathrm{x}}} \:−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \mathrm{a}}\:\mathrm{a}^{\sqrt{\mathrm{x}}} \right\}\:+\mathrm{c} \\ $$

Commented by peter frank last updated on 14/Oct/20

thank you both

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{both} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com