Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 116845 by mohammad17 last updated on 07/Oct/20

Commented by mohammad17 last updated on 07/Oct/20

help me sir

$${help}\:{me}\:{sir}\: \\ $$

Answered by TANMAY PANACEA last updated on 07/Oct/20

st line AB ((x−2)/(6−2))=((y−4)/(8−4))→((x−2)/1)=((y−4)/1)  direction ratio (1,1)  r=2i+4j+α(i+j)  l_1    is  r_1 =6i+4j+λ(i+j)  ((x−6)/1)=((y−4)/1) direction ratio of l_1 is (1,1)  so AB  ∥ to l_1   l_2  eqn is ((x−6)/(6−4))=((z−0)/(0−2))  vector eqn l_2 is   r=6i+0k+λ(2i−2k)  or  ((x−4)/(6−4))=((z−2)/(0−2))→r=4i+2k+λ(2i−2k)

$${st}\:{line}\:{AB}\:\frac{{x}−\mathrm{2}}{\mathrm{6}−\mathrm{2}}=\frac{{y}−\mathrm{4}}{\mathrm{8}−\mathrm{4}}\rightarrow\frac{{x}−\mathrm{2}}{\mathrm{1}}=\frac{{y}−\mathrm{4}}{\mathrm{1}} \\ $$$${direction}\:{ratio}\:\left(\mathrm{1},\mathrm{1}\right) \\ $$$${r}=\mathrm{2}{i}+\mathrm{4}{j}+\alpha\left({i}+{j}\right) \\ $$$${l}_{\mathrm{1}} \:\:\:{is}\:\:{r}_{\mathrm{1}} =\mathrm{6}{i}+\mathrm{4}{j}+\lambda\left({i}+{j}\right) \\ $$$$\frac{{x}−\mathrm{6}}{\mathrm{1}}=\frac{{y}−\mathrm{4}}{\mathrm{1}}\:{direction}\:{ratio}\:{of}\:{l}_{\mathrm{1}} {is}\:\left(\mathrm{1},\mathrm{1}\right) \\ $$$${so}\:{AB}\:\:\parallel\:{to}\:{l}_{\mathrm{1}} \\ $$$${l}_{\mathrm{2}} \:{eqn}\:{is}\:\frac{{x}−\mathrm{6}}{\mathrm{6}−\mathrm{4}}=\frac{{z}−\mathrm{0}}{\mathrm{0}−\mathrm{2}} \\ $$$${vector}\:{eqn}\:{l}_{\mathrm{2}} {is}\:\:\:{r}=\mathrm{6}{i}+\mathrm{0}{k}+\lambda\left(\mathrm{2}{i}−\mathrm{2}{k}\right) \\ $$$${or}\:\:\frac{{x}−\mathrm{4}}{\mathrm{6}−\mathrm{4}}=\frac{{z}−\mathrm{2}}{\mathrm{0}−\mathrm{2}}\rightarrow{r}=\mathrm{4}{i}+\mathrm{2}{k}+\lambda\left(\mathrm{2}{i}−\mathrm{2}{k}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com