Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 116633 by zakirullah last updated on 05/Oct/20

Answered by Olaf last updated on 05/Oct/20

If B is a inverse matrix of A  then B.A = A.B = I (1)    If C is another inverse matrix of A  then C.A = A.C = I (2)    (1) and (2) :  I = AB = AC  ⇒ AB−AC = 0^∼  (the null matrix)  ⇒ A(B−C) = 0^∼   ⇒ A = 0^∼  impossible because  A is inversible.  Or B−C = 0^∼  ⇒ B = C  impossible because B is different  of C. Contradiction !    So the initial hypothesis is false.

$$\mathrm{If}\:\mathrm{B}\:\mathrm{is}\:\mathrm{a}\:\mathrm{inverse}\:\mathrm{matrix}\:\mathrm{of}\:\mathrm{A} \\ $$$$\mathrm{then}\:\mathrm{B}.\mathrm{A}\:=\:\mathrm{A}.\mathrm{B}\:=\:\mathrm{I}\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{C}\:\mathrm{is}\:\mathrm{another}\:\mathrm{inverse}\:\mathrm{matrix}\:\mathrm{of}\:\mathrm{A} \\ $$$$\mathrm{then}\:\mathrm{C}.\mathrm{A}\:=\:\mathrm{A}.\mathrm{C}\:=\:\mathrm{I}\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:: \\ $$$$\mathrm{I}\:=\:\mathrm{AB}\:=\:\mathrm{AC} \\ $$$$\Rightarrow\:\mathrm{AB}−\mathrm{AC}\:=\:\overset{\sim} {\mathrm{0}}\:\left(\mathrm{the}\:\mathrm{null}\:\mathrm{matrix}\right) \\ $$$$\Rightarrow\:\mathrm{A}\left(\mathrm{B}−\mathrm{C}\right)\:=\:\overset{\sim} {\mathrm{0}} \\ $$$$\Rightarrow\:\mathrm{A}\:=\:\overset{\sim} {\mathrm{0}}\:\mathrm{impossible}\:\mathrm{because} \\ $$$$\mathrm{A}\:\mathrm{is}\:\mathrm{inversible}. \\ $$$$\mathrm{Or}\:\mathrm{B}−\mathrm{C}\:=\:\overset{\sim} {\mathrm{0}}\:\Rightarrow\:\mathrm{B}\:=\:\mathrm{C} \\ $$$$\mathrm{impossible}\:\mathrm{because}\:\mathrm{B}\:\mathrm{is}\:\mathrm{different} \\ $$$$\mathrm{of}\:\mathrm{C}.\:\mathrm{Contradiction}\:! \\ $$$$ \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{initial}\:\mathrm{hypothesis}\:\mathrm{is}\:\mathrm{false}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com