Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 116290 by ravisoni last updated on 02/Oct/20

Commented by Dwaipayan Shikari last updated on 03/Oct/20

f(x)=sin^(−1) x  f′(x)=(1/( (√(1−x^2 ))))  f′(x)=(1−x^2 )^(−(1/2))   f′(x)=1+(x^2 /2)+(3/4)x^4 +((15)/8)x^6 +...  f′(x)=Σ_(k=0) ^∞ ((2k!)/(2^(2k) .k!))x^(2k)                                                                 f′′(x)=Σ_(k=0) ^∞ ((2k!)/(2^(2k) .k!))(2k.x^(2k−1) )  ..f^n (x)=Σ_(k=0) ^∞ ((2k!)/(2^(2k) .k!))(2k.(2k−1).(2k−2)(2k−3)...(2k−n+1)x^(2k−(n−1))

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}^{−\mathrm{1}} \mathrm{x} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}^{\mathrm{4}} +\frac{\mathrm{15}}{\mathrm{8}}\mathrm{x}^{\mathrm{6}} +... \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2k}!}{\mathrm{2}^{\mathrm{2k}} .\mathrm{k}!}\mathrm{x}^{\mathrm{2k}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{f}''\left(\mathrm{x}\right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2k}!}{\mathrm{2}^{\mathrm{2k}} .\mathrm{k}!}\left(\mathrm{2k}.\mathrm{x}^{\mathrm{2k}−\mathrm{1}} \right) \\ $$$$..\mathrm{f}^{\mathrm{n}} \left(\mathrm{x}\right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2k}!}{\mathrm{2}^{\mathrm{2k}} .\mathrm{k}!}\left(\mathrm{2k}.\left(\mathrm{2k}−\mathrm{1}\right).\left(\mathrm{2k}−\mathrm{2}\right)\left(\mathrm{2k}−\mathrm{3}\right)...\left(\mathrm{2k}−\mathrm{n}+\mathrm{1}\right)\mathrm{x}^{\mathrm{2k}−\left(\mathrm{n}−\mathrm{1}\right)} \right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com